
MC6809
PRELIMINARY PROGRAMMING MANUAL

@MOTOROLA

-

MC6809

PRELIMINARY PROGRAMMING

MANUAL

Motorola reserves the right to make changes to any products
herein to improve reliability, function or design. Although
the information in this document has been carefully reviewed
for broad application, Motorola does not assume any liability
arising out of the application or use of any product or cir­
cuit described herein; neither does it convey any license
under its patent rights nor the rights of others.

First Edition
MOTOROLA INC. 1979
"All Rights Reserved"

-

•

FOREWORD

This Preliminary programming manual was excerpted from
the system design specification for the M6809 and as
such occasionally betrays its origin. It is, however,
complete and correct and contains all the information
necessary to construct a M6809 system and to write the
software for that system. References made in this man­
ual to the MC6801 also apply to the MC6803, and re­
ferences the MC6802 also apply to the MC6808.

When a discrepancy is found between this preliminary
manual and the MC6809 Advance Information Data Sheet,
the data sheet takes precedence.

Further details pertaining to the assembly language syn­
tax and M6809 assembler operation can be found in "Macro
Assemblers Reference Manual", part no. M68MASR(D).

-

-
TABLE OF CONTENTS

1.0 PRODUCT OVERVIEW

1.1 DESIGN TARGET

1.1.1 RESULTS OF 6800 ANALYSIS

1.1.2 HARDWARE IMPROVEMENTS

1.1.3 THROUGHPUT IMPROVEMENTS

1.1.4 SOFTWARE IMPROVEMENTS

1.1.5 ARCHITECTURAL IMPROVEMENTS

1.1.6 INNOVATIVE IMPROVEMENTS

1.2 SUMMARY OF FEATURES

1.2.1 HARDWARE

1.2.2 SOFTWARE

2.0 CHIP ARCHITECTURE

2.1 BLOCK DIAGRAM

2.2 PIN DESCRIPTION

2.2.1 SIGNALS OF THE 6809

2.2.2 POWER

2.2.3 CLOCK

2.2.4

2 . 2 . 5

2.2.6

2.2.7

2. 2. 8

2. 2. 9

ADDRESS BUS

DATA BUS

R/W

RESET

HALT

INTERRUPTS

-

3.0

2.3 PINOUT DIAGRAMS

2.4 USING 6809 BUS TIMING

2.4.1 OMA

2.4.2 DYNAMIC MEMORY

2.4.3 SLOW DEVICES

2.4.4 MULTI-PROCESSORS

SOFTWARE ARCHITECTURE

3. 1 PROGRAMMING MODEL

3. 1. 1 ACCUMULATORS

3. 1. 2 DIRECT PAGE REGISTER

3. 1. 3 CONDITION CODE REGISTER

3 .1. 4 INDEX REGISTERS

3. 1. 5 STACK REGISTERS

3 .1. 6 PROGRAM COUNTER

3 .1. 7 STACK PROGRAMMING TECHNIQUES

3.2 ADDRESSING

3. 2. 1 REGISTER ADDRESSING NOTATION

3.2.2 REGISTER ADDRESSING MODES

3. 2. 3 MEMORY ADDRESSING NOTATION

•

3.2.4 MEMORY ADDRESSING MODES

3.2.4.1 INHERENT

3.2.4.2 ACCUMULATOR

3.2.4.3 IMMEDIATE

3.2.4.4 ABSOLUTE

3.2.4.4.1 DIRECT

3.2.4.4.2 EXTENDED

3.2.4.4.3 EXTENDED INDIRECT

3.2.4.5 REGISTER

3.2.4.6 INDEXED

3.2.4.6.1 CONSTANT-OFFSET INDEXED

3.2.4.6.2 CONSTANT-OFFSET INDEXED INDIRECT

3.2.4.6.3 ACCUMULATOR INDEXED

3.2.4.6.4 ACCUMULATOR INDEXED INDIRECT

3.2.4.6.5 AUTO-INCREMENT

3.2.4.6.6 AUTO-INCREMENT INDIRECT

3.2.4.6.7 AUTO-DECREMENT

3.2.4.5.8 AUTO-DECREMENT INDIRECT

3.2.4.7 RELATIVE

3.2.4.8 LONG RELATIVE

3.3 INSTRUCTION SET

3.3.1 OPERATION NOTATION

3.3.2 REGISTER NOTATION

3.3.3 INSTRUCTIONS

...

3.4 6809 STACKING ORDER

3.5 HARDWARE INCOMPATIBILITIES WITH 6800 AND 6802

3.6 SOFTWARE INCOMPATIBILITIES WITH 6800, 6802 AND 6801

3.7 MULTI-PROCESS SYNCHRONIZATION

3.8 6809 ASSEMBLY-LANGUAGE SYNTAX

3.9 6800-EQUIVALENT INSTRUCTIONS

3.10 6809 SUMMARY CARD

3.11 6809 OP CODE MAP

3.12 INDEXED-MODE POST-BYTE

3.13 LEGAL TRANSFER AND EXCHANGE PATHS

3.14 BRANCH GROUPS

3.15 8-BIT OPERATIONS

3.16 16-BIT OPERATIONS

3.17 INDEXED ADDRESSING MODES

3.18 RELATIVE SHORT AND LONG BRANCHES

3.19 MISCELLANEOUS INSTRUCTIONS

-
4.0 SYSI'E.M3 INTERFACING

4. 1 INfERRUPfS

S. 0 SPECIFICATIONS - Dtl.£Ttb . . . 5t€ APV. INFO. l>.47"tl SHt"D"'

6.0 SOFTWARE DESIGN

6.1 BENGIMARKS

7.0

6.2 PROGRAM SEGMENTS

6.3 SYSTEM EXAMPLE

PROGRAMMING TRICKS 'N TREATS

7.1 INSTRUCTION EQUIVALENTS

7.2 COMPATIBLE MACROS

7.3 PROGRAM- FLOW MANIPln.ATIONS

7.4 PROGRAMMING HINTS

7.5 REFRESHMENTS

7.6 SOFTIVARE OOCUMENTATION STANDARDS FOR 6809

7.7 ADDITIONAL TRICKS 'N TREATS

-

-
1.0 OVERVIEW

The 6809 is an 8-bit NMOS microprocessor designed with

particular attention to real-time programming and char­

acter-manipulation data processing. It is compatible

with the 6800 microprocessor bus and family parts, and
is capable of superior computing performance.

Even people who have not previously used the 6800 will

find the 6809 a serious contender for their microprocessor

business. The consistent and powerful instruction set

makes our computer easy -- and even fun! -- to program.

The enhanced architecture allows programming techniques
that reduce the risk and increase the life of the pro­

gramming investment. The resultant programs are fast and

efficient. And, since our machine is byte-oriented (as

opposed to 16-bit) it is best at processing byte quantities

-- exactly the facility required for High-Level-Language

and business data-manipulation.

People who have used the 6800 will find the 6809 very

familiar and easy-to-learn. For example: the 6800 had

one stack pointer; now the 6809 has two stack pointers,

and a single instruction can push a register, a couple
of registers, or the entire machine state (all visible

registers) onto the stack. Another example: the 6800

had one index register; now the 6809 has two index

registers. And both stack pointers are indexable. And
so is the program counter. So the 6809 is not different

from the 6800, just tremendously more capable.

-
1. 1 DESIGN TARGET

The principal thrust for the design of the 6809 MPU

was to create a processor which would improve our

position in present markets, and the vast consumer

markets still to come. We expect that markets such

as Business Accounting, Word Processing, Scientific/

Business Programming, Medical Analysis, Communications

Switching, etc., will find the 6809 an optimal choice.

1. 1. 1 Results of 6800 Analysis

Extensive analysis of difficulties in using the

6800 brought out a number of more-specific design
goals for the 6809. These ranged from rather

obvious improvements (like "greater throughput,"

"more registers, 11 and "PUSH X11
) through those

typical of professional architectural design

(
11 consistancy, 11 and "powerful addressing") to

innovative attempts to crack the problem of
expensive software ("position-independence,"

and "indirect addressing for I/0 11
). Next, we

examine some of the ramifications of these

improvements.

1. 1. 2 Hardware Improvements

A number of hardware difficulties are resolved

from the original 6800 system: R/C RESET, on­

chip clocks, and improved bus-timing specs

make the system easier to use and easier to
run faster. Extensive analysis of the inter­

action between various control/response signals
(interrupts, HALT, BA, RESET, IACK, etc.)has the

new signals (READY) work with the old to handle

multiple-processor and other new applications.

•

1. 1. 3 Throughput Improvements

The 6809 can provide a radical throughput improve­
ment that qualifies it for a number of tasks
previous 1 y u n s u i t e d to micro processors . The en -
hanced architecture (additional index registers
and stack pointers) and greatly-expanded address­
ing capabilities simplify algorithms and program­
ming while speeding processing. New instructions
and better bus-timing give us an even more power­
ful machine. And 11 optimizing 11 code using the
new Direct Page Register can further increase
speed and reduce program size.

But no matter how fast the machine goes,
there will always be some application just out
of reach, and it will always be 11 nice 11 to have
the same job done in half the time. Many ~ystems

will use multiple processors for just this reason.
But the fact of the matter is, once any machine
can do your job in the time you require, through­
put has ceased to be important. It is more impor­
tant that the machine be easy to use and easy to
proqram. The hardware designer can verify
his work each system signal, if necessary --
by experiment. Not so the software designer, who
can easily build systems that would take longer
to exhaustively test than there has so far been
life on Earth.

-
1. 1. 4 Software Improvements

Some things which facilitate program correctness
are: Block Structure, High-Level-Language; and,
at the machine level, a regular architecture,
consistent instruction-set and logical assembly
language. We have made a conscious attempt to
minimize the number of assembly-language mnemonics,
a n d t o ma k e t h o s e wh i ch rem a i n a p p 1 y c o n s i s t en t 1 y ,
both functionally and syntactically, to similar
registers. We have nevertheless added some

redundant m r1 em on i cs (LS L , B HS , BL 0 , BR N) to
fill out particular instruction types, making
them easy to remember and available for compiler­
produced code.

1.1.5 Architectural Improvements

Perhaps the most powerful improvement we have
made was to greatly expand the 6809's addressing

capabilities over the 6800. Let's talk a little
about 11 state-information 11

• The true description

of the state of a computer program includes the
description of every bit in both the memory and
the CPU. Compared to the memory environment in
which it processes data, even register-oriented
computers have a very limited amount of program
state information available internally. By

vastly-expanding the addressing modes, and mak­
ing each apply to any of the four pointer re­
gisters, we orient the machine to saving most
program state information in memory, where there
is plenty of space, as opposed to in the CPU
itself where it is very expensive.

-
1.1 .5 (Continued)

Some CPU designers have gone even further, effect­
ively placing their registers in memory, on the
assumption that if a little of something is good,
a lot is better. These machines must fetch data
from memory, operate on it, then put it back -
and they are inevitably slower.

1.1.6 Innovative Improvements

Perhaps most intriguing from an architectural
point of view,

are the features
we included to attack the problem of high-cost
software. While microprocessor-family sales
would seem to be a business· capable of exponential
expansion, vast applications markets are still
closed due to the unavailability of quality soft­
ware. And the software is unavailable because
of its high development costs and very low security.

1.1.6. l ROM's For Low-Cost Software

One attack on reducing development costs is to
move the results into massproduction -- in this
case, Read-Only-Memories. But ROM's are risky;
if the software is not carefully designed, it
will only apply to one system -- a custom product
at custom economics. And a single software error
could conceivably require that every unit..:!..!:!. the
field be recalled; the risk of software error
cannot be amortized over the number of units
produced.

-
l .1 .6.1 (Continued)

The error problem will always require very
careful modular testing, but by insisting on
a regular architecture and logical assembly
language, that risk is noticeably reduced.
The problem of making the ROM applicable to
large numbers of arbitrary hardware designs
requires a solution to the problem of Position­
Independent-Code (PIC).

1.1.6.2 Position Independence

By Position-Independent we mean that the exact
same machine-language code can be placed any­
where in memory and still function correctly
(PIC is also called 11 self-relative 11 code). The
6800 has a limited form of position-independent
control-transfer in its branch instructions, and
we have added long branches to complete this
capability. But that is only part of the prob­
lem: it is also crucial that RAM storage for
global, permanent, and temporary values be
easily available in a position-independent manner.
We suggest placing this data on the stack, since
the stacked data is exceedingly easy to access
and manipulate. It is suitable to stack the
absolute addresses of I/0 devices before calling
a standard software package, and the package can
use the stacked addresses for I/0 in any system.

It is also necessary to be able to gain access to
tables or data or immediate values in the text
of the program; the LEA instructions allow the

-
1. 1.6.2 (Continued)

user to point at data in a position-independent
manner, as, for example:

LEAX MSGl,PCR
LBSR PDATA

5
MSGl FCC I PRINT THIS!/

Here we wish to point at a message to be printed
from the body of the program. By writing "MSGl,
PCR" we signal the assembler to compute the
distance between the present address (the address
of the LBSR) and MSGl. This result is inserted
as a constant into the LEA instruction which
will be indexed fro~ the program counter value
at the time of execution. Now, no matter where
the code is located, when it is executed the
computed offset from the program counter will
point at MSGl. This code is position-independent.

l . l . 7 Summary

In short, the 6809 microprocessor will provide the
user with greatly-improved performance, reduced
system-complexity, and radically new capabilities.
Its innovative features will allow deep inroads to
be made in quality low-cost programs.

-
l. 2 SUMMARY OF FEATURES

1.2.l Hardware

o 8-Bit Data I 16-Bit Address Bus
o MC6800 Bus Compatible
o Single 5v Supply I 40 pins

o TTL - Compatible
o Fast Interrupt Request Input
o Interrupts may be Vectored by Device

o Two Status Outputs (BA and BS)
o On-Chip Clock Version 4 x f 0

M Rt>'(i n p u t f o r s l ow memo r y

- ~/9R£Q i n p u t f o r D MA

1.2.2 Software

o MC6800 Upward-Compatible Architecture
Two 8-Bit Accumulators

Two 16-Bit Index Registers
Two 16-Bit Stack Pointers (with index capability)
Programmable Direct Page Register

o MC6800 Upward-Compatible Instruction-Set
59 Instruction Mnemonics

268 Opcodes
1464 Instructions w/different addressing modes
8x8 Unsigned Multiply
16-Bit Arithmetic (Load, Store, Add, Subtract,Compan)
Powerful Push/Pull Instructions

Powerful Register Transfers and Exchanges

Powerful Address-Manipulation Instructions
Extended-Range Long Branches

..

1 . 2 . 2 (Continued)

• MC6800 Upward-Compatible Addressing

10 Addressing Modes

24 Indexed Sub-modes

Indexing Applied From Either Index Register

or Either Stack Pointer

Constant Indexing From PC

Indirect Addressing (Post-Indirection)

Up to 16-Bit Indexed Offsets

Auto-Increment/Decrement

• Fully-Supports Various Software Disciplines

Position-Independent Code

Non-Self-Modifying Code

Structured, Highly-Subroutined Code

Multi-Task and Multi-Processor Organization

Stack-Oriented Compiler Instructions

Re-Entrancy and Recursion

-
2.0 CHIP ARCHITECTURE

2. 1 6809 BLOCK DIAGRAM

4;i C;;

Ao - A IS- Do- Dr

I\- /\:-
I ,,,.

/ v-,6
/ ~

--- --
, pc. -~

, ,
7 "' u ~

·- ~ -
~ r s ~

y ,
~ ,

, ,,, -- x ~

r A ~ ... ,
~ D ...
~

B ~ ~

' " \.

; -, DP cc - , -

•\

,1,

ALU _, --
---- "--

\!i

IR

J

, Ii 't

l)ITERRUPT -
CONTROL ; -

'\
I

I
BU.S. ~ -

CONTROL..

'I\
I

' t

TIM 11\l ~
, -

!

~

~

-,,.

>

·-,,
. ,

-
"

-
-;

RESH

NMI

FIRQ.

IRQ.

Il\C~

~~fliREG
R/w

HALT

8A

85

XTAL

EXTAL

RE1'.DY

E

Q

-
z. 2. p1 N Descf"ip+iot-.a

2.2.1 Signals of the 6809

2 - Power

16 - Address Bus

8 - Data Bus

1 - R/W

1 - RESET

1 - NMI

1 - FIRQ

1 - IRQ

1 - DMA/BREQ

1 - HALT

1 - BA

1 - BS

1 - XTAL J 4JC fO

1 - EXT AL only

1 - MRDY"

1 - E out

1 - Q out

-
2. 2. 2

2. 2. 3

(V V Power ss, dd)

Two pins are used to supply power to the part:

Vss is ground or Ov, while Vdd is +5.0v ±.5%.

Clock (XTAL, EXTAL, E, Q, !)MA/BRE"<>i
'

MRt>Y)

The pins XTAL and EXTAL are used to connect the

on-chip oscillator to an external parallel-resonant

crystal; this oscillator may take as long as

20 msec to become operational after power-on.

Alternately, the pin EXTAL may be used as a TTL-

level input for external timing; the crystal

frequency or external input is 4x the bus frequency.

E is the standard 6800-bus system timing signal.

The leading edge of E indicates to memory and

peripherals that the address is (should be) suffi­

ciently set-up to begin with operations (E AQ is the

address set-up time for peripherals). Data flows

on the data bus during E and is latched on the

trailing edge of E.

Q is a quadrature clock signal which leads E and

which has no parallel on the 6800. Addresses from

the MPU will be guaranteed good with the leading

edge of Q.

-
2.2.3 (Continued)

I>MA}B~f~ is a

request to temporarily suspend MPU operation and take

the MPU off of the MOS bus. A DMA/~£Q is always accepted

"immediately" (at the end of the next E) to insure

a maximum asynchronous latency of one bus cycle

(although the system bus will typically require

a "dead" cycle before beginning an actual transfer).

The user may decode the bus grant state

(BA A BA one-half-cycle-delayed) to place the

DMA device on the MPU buses; this will be

appropriate timing so as to eliminate bus

contention both into and out of DMA. The MPU

has an internal counter which will periodically

switch the MPU back onto the bus, execute one

cycle, then return to DMA operation. This

automatic MPU refresh allows DMA operations of

arbitrary length.

MRt>'(- Memory Ready

is designed to extend the

required data access time for use with slow memory

(it does not increase address set-up time).

is also designed to extend a memory access until a

multi-processor shared-memory can respond to the

access request.

-

When a memory-access is to be extended, MRt>Y should

be LOW some setup time before the trailing-edge of

E of that access cycle;

held in the EA Q state.

the clocks will then he

After MRt>Y is made HIGH,

up to one-quarter bus cycle will elapse before

the memory access is completed (at the trailing-edge

of E). M~Y can only extend the memory access to

10 microseconds for the standard part (a 100 micro­

second extension capability may be available as a

selected version at increased cost).

2.2.4 Address Bus (AO - A15)

Sixteen pins are used to place information from the

MPU onto the address bus. Each pin will drive one

standard TTL load (or four LS loads) plus eight

6800-family devices at rated bus speed. Additional

MOS devices may be driven by eliminating the TTL

load, or by reducing the bus rates. All address

drivers are made high-impedence when output BA is

HIGH. The address pins may start to change an

address hold-time after the trailing edge of E, and

they will be stable with the leading edge of Q.

-

2.2.4 (Continued)

When the processor does not need to use the bus for

a data transfer it will send address FFFF 16 and

R/W = l; this will replace the VMA function on the

6800. This dummy access may be differentiated from

a RESET by not being acknowledged as an interrupt;

i.e., the dummy access will have a BA/\ BS status,

while RESET vector fetch will have BA/\ BS. It is

recommended that the user not otherwise read access

location FFFF 16 when decoding FFFF 16 as non-VMA.

2.2.5 Data Bus (D0 - D7)

Eight pins provide communication with the bi-direc­

tional data bus. Each pin will drive one standard

TTL load plus eight 6800-family devices at rated

bus speed. All data bus drivers are made high

impedence when the BA output is HIGH. The period

E~Q is used to tri-state the data bus to allow data

bus turnaround without contention. The MPU will

start to propagate data to the data bus with the

leading edge of Q, but peripherals generally pro­

pagate data only during E. All data receivers

require data to be valid some set-up time before

E goes LOW, when data is latched in the receiving

device.

..

2.2.6 Read/Write (R/W)

One output pin indicates the direction of data

transfer on the data bus; a LOW level on this

line indicates that the MPU is sending data on

the data bus. R/W is made high-impedance when

the output BA is HIGH. R/W is good with the

leading edge of Q, the same as the address bus.

2.2.7 Reset (RESET)

A LOW-level on this Schmitt-trigger input (for at
wi 11

least one cycle)~Reset the MPU. The MPU will take

5 bus cycles for a complete Reset; this will abort

the present instruction, jam 00 16 into the Direct

Page Register, set the F and I mask bits in the

Condition Code Register, and disable the NMI (until

after the first load into the stack pointer) .

Assuming that neither the HALT nor the DMAf&'fG pins are

LOW, the MPU will begin operation immediately after

RESET goes HIGH. The MPU will read data from locations

FFFE 16 and FFFF16 , then use this data as the address

of the first opcode to be executed.

Because RESET on the MPU is a Schmitt-trigger input

which needs a higher 'l' level than is required by

the peripherals, a simple RC network can be used to

-

2. 2. 7

2 . 2 . 8

(Continued)

Reset the entire system. The peripherals will be

fully out of Reset before the MPU can start operation

and therefore before the MPU can attempt peripheral

initialization.

During initial power-on, the RESET line should be

held LOW until the clock oscillator is fully oper­

ational, and only then released.

If the HALT or DMA/BR.EQ pins are LOW when RESET returns

to a HIGH level, the RESET positive-edge will be

latched. The MPU will then wait until resumption of

a Running state before completing the Reset. The

MPU will not come out of tri-state during HALT or

DMA even if RESET.

Since DMA operation may occur during RESET, DMA or

MRDY may lengthen the total bus transaction period.

A full Reset will take, therefore, correspondingly

longer in terms of real time.

Halt (HALT, BA, BS)

A L01~ level on the HALT input causes a running MPlT

to halt at the end of the present instruction, and

remain halted indefinitely without loss of data,

until the HALT pin is driven HIGH. When the MPU is

-

2. 2. 8 (Continued)

halted, the BA output is driven HIGH (which indicates)

that the buses are tri-stated) and BS is driven HIGH

to indicate a HALT or DMA state. While halted, the

MPU cannot respond to some real-time requests although

a OMAl&J& will always be accepted, and NMI or RESET

will be latched for later response. Conversely,

if the MPU is not running (bMA/~ or RESET) the HALT

state will not be achieved until the MPU is released

with HALT LOW.

BA (Bus Available) is an indication of an internal

control signal which tri-states the MOS buse~(address,

data, R/W) on the MPU. This is a valuable signal for

any form of bus-sharing or DMA, but does not imply

that the bus will be available for more than one

cycle. When BA transitions from a HIGH to a LOW

state, an additional cycle will always elapse

before the MPU regains the bus.

BS (Bus State) is an encoded pin which, in conjunction

with BA, indicates the present MPU state.

Status indications are valid with the leading edge

of Q.

-

2. 2. 8 (Continued)

BA BS MPU STATE

0 0 Normal (Running)

0 1 IACK

1 1 HALT + SU~ &AANT

1 0 SYNC Acknowledge

SYNC Acknowledge is indicated on pins BA and BS

(BA~ BS) while the MPU is waiting for external syn­

chronization (on an interrupt line). CWAI does not

tri-state the buses and is not acknowledged.

Interrupt Acknowledge is indicated on pins BA and BS,

(BA A BS) during both cycles of a hardware-vector­

fetch (RESET, NMI, SWI, etc.).

Because the 6800 family does fetch vectors (most

other MPU's do not) this signal, plus decoding of

the lower four bits of the address bus, can provide

high-speed interrupt capability (vectored by device)

which other MPU's do not have.

External decoding logic can indicate which vector is

being used (thus, which interrupt-level has been

accepted), turn-off the vector-ROM (if ROM), and jam

onto the data bus the address of the desired interrupt

handler. This technique could drastically decrease

interrupt latency compared to a polled approach.

..

2.2.8 (Continued)

It is not sufficient merely to decode a vector address

to indicate a vector-fetch, since normal accesses,

including indirect JUMPS, can be made to these location!

Such a normal access may well occur even after an ex­

ternal interrupt request has been received (it may be

masked!).

2.2.9 Interrupts (NMI, FIRQ, IRQ)

The interrupt system on the 6809 has been extensively

analyzed to eliminate any unknown states from any

combination of hardware signals and valid instruction

operations. All interrupt inputs are latched during

every Q, and will be delayed another bus cycle

before they are seen by the MPU. NMI is edge-sensitive

in the sense that if it is sampled LOW one cycle after

it has been sampled HIGH, a NMI interrupt will be

triggered. Because NMI is not masked by execution of

a NMI, it is possible to take another NMI interrupt

before executing the first instruction of the NMI

routine. A fatal error will exist if an NMI is allowed

to occur regularly before completing the RTI of the

previous NMI, since the stack will surely overflow.

FIRQ and IRQ are both level-sensitive in the sense

that the interrupt will be accepted anytime the running

-

2. 2. 9 (Continued)

processor sees FIRQ or IRQ and the associated mask bit

both LOW. This means that the associated interrupt

handler must cancel the original interrupt, or the

program will never return to the interrupted routine.

FIRQ provides fast interrupt response by stacking only

the return address and condition-codes. This will allow

read-modify-write operations (like CLR, TST, INC, DEC,

rotates, etc) with minimal overhead. Alternately,

any desired subset of registers may be saved (and later

recovered) using PSH/PUL instruction.

IRQ provides a slower response to interrupts, but stacks

the entire machine state. This means that interrupting

routines can use all CPU resources without fear of

damaging the processing of the interrupted routine.

All interrupt pins can be used with the SYNC instruction

which causes the processor to stop processing and tri­

state its buses; any interrupt input then causes pro­

cessing to resume. If that input was masked, the pro -

cessor will simply execute the next in-line instruction.

If that input was not masked (or was NMI) the interrupt

sequence will occur. This means that the same interrupt

line that is used for arbitrary interrupts can be used

for periods of high-throughput program/device synchron­

ization. Naturally, other devices on the same

..

2.2.9 (Continued)

line must be disarmed (disabled at the source).

All interrupt-handling routines should return to

the formerly-executing task using an RTI instruction.

-

Vs~

NM1
Iii
F!Ro.
BS
8~

Voo
A•
Al
.\2
A3 ,,.,
AS

I\'
A7
~8

A'
AIO

A•I
AIZ.

--
-
--
-
-
--
-
--

-

-

- I • -
r -

z
- - .3
-

~ MC,805
~

' - 7

e

' 10

II

11,

13 ,.,
IS-,,
17

18
If

LO

"4• ,,
31
.57

J'
JS"

J'f
~J

JJ. ,,
Jo
21
l8
l1

u
lr

l'/
ll

~z

ZI

- -... -
--

--
' - --

--
-

- -- -
-,.

- .
. ,.

- -
- ,.

- -- -
- --

- --- -- -

-

-H~L.1'
XT~L.

E'l.TAl..

RU~T

MRbY
QOUT

'OUT
bMJ./•&
~lw

OGI
DI
Pl
o~

Pi+
CS'

0(,

01

A.IS
A•li
Al3

..
2.4 USING 6809 BUS TIMING

2.4.1 DMA

The three 6800 methods of DMA (HALT-mode, cycle­

stealing, and bus multiplexing) are also available

on the 6809, and cycle-stealing is controlled by

the chip itself (in the on-chip clock version).

Halt-mode DMA is achieved by pulling the HALT line

LOW and waiting for a Halt+DMA acknowledge

(BAA BS) =l which will occur after the last cycle of

the current instruction. The MPU will tri-state its

buses to allow a DMA device to take over the MOS bus,

and the bus clocks (E and Q) from the chip will con­

tinue to run to provide system timing for DMA trans­

fers. The MPU may be held in HALT indefinitely, but

the worst-case latency into Halt-mode DMA is 20 cycles

(SWI2). The Halt-mode is terminated by bringing the

HALT line HIGH; the MPU will resume normal operation

one cycle after goes LOW.

Cycle-stealing DMA is handled (in the on-chip-clock

version) by pulling the DMA;iREQ line LOW with the

trailing edge of Q. The internal MPU clocks will

stop and the MPU will start to tri-state its MOS

drivers a hold-time after the trailing-edge of E

(BA will go LOW). An external DMAVMA must be

generated to disable the memory during the 'dead'

2.4.1 (Continued)
cycle between different bus masters. External logic

may place the DMA device on the bus sometime during

the last half of the dead cycle. The E and Q bus

clock signals from the chip continue to run to

provide bus timing for DMA transfers.

Synchronous latency into Cycle-stealing DMA is less

than one-quarter bus cycle; asynchronous latency may

be a full cycle longer. Cycle-stealing DMA is ter­

minated by returning DMA/~EQ to a HIGH level with the

trailing edge of Q, the DMA device must get off the bus

a hold-time after the trailing-edge of E of the same

cycle (BA= LOW). The MPU will start to come out of

three-state at the end of the dead cycle. (Meanwhile,

an external DMAVMA must be generated to eliminate the

false memory access).

Cycle-stealing DMA is similarly available in the

off-chip-clock version of the 6809, with the ex-

ception that all control and timing occurs external

to the chip. This circuitry must assure that the

MPU is suspended with clock signals E/\Q, while

continuing to generate E and Q clocks for the system.

Bus-multiplexing DMA requires external buffers from

the MPU which are gated onto the system buses during

a portion of the MPU cycle (usually during E). Buffers

2.4.1 (Continued)

from DMA devices are gated on the system buses during

E, thus allowing 50% of the bus bandwidth for DMA.

2.4.2 Dynamic Memory

Dynamic memory is usually considered to be a high­

priori ty form of cycle-steal DMA. That is, the

refresh controller (possibly a DMA chip) accesses

either 64 (for 4K RAM's) or 128 (for 16K's) consecu­

tive locations within each 2 millisecond interval.

Another form of dynamic memory refresh is to guarantee

a software access of the required number of consecutive

locations every 2 milliseconds. This can be ~one by

using a real-time clock to cause a FIRQ interrupt, then

using 63 or 127 consecutive PAGE 2 pre-bytes followed

by an RTI; this sequence is not interruptable (and must

not be interruptable, if memory integrity is to be

guaranteed) .

2.4.3 Slow Devices

Various clock signals from the 6809 MPU allow for

increasing memory timing parameters, including both

access time and set-up time.

Access-time extension is provided by pulling the

MREADY pin LOW in response to the leading-edge of

E.

Q

AJJ~~
8v.s

t>o.to.
Bus

DMt\Re-((

BA

DMAvMA.~

L__MPU
r-~EAD +

!1tJS 8U.S Dl1A SEQU£NC£

MPV __....J MP\J I ~" ~ D~")Ii' I<
WRITE------. or:r: olJ I - REl\C>

DM/\
~Rt TE

;;i I< C>M~ ___,_!MPv~ Mf'U ?o I "E MPV __J
or=I"' ~I°"" RCl'lt> w~tTE----,

I I I I I I I I I I I I I I I I I

_ll r I I f I I I I I I I I !L
-

l?/11 ~. Wiii A.G. ~//,I A.G. 1111(A.6. > <fl A.G. WIA A.~. I

\JI I I 11 \ /'!1771 I/ __ ,----
~ ~ -j

A.G. =: Ad.d.re..ss ~ood
D I G. =:: Di:tta.. ~ 0 od.

~ 1::..~+e f'Y'\ ~lly ~ eVle.ro...+e..&
II /2 ~) [,S /!FR_

E l 1 7 '\\l
_J I 1 71 mr

~y \\\\\ u I

2.4.3 (Continued)

E. The memory-access will be extended, in integral

multiples of the high-frequency clock, until some

period (0-1 H.F. cycles) after the MR line is returned

HIGH. Note that the MPU may only be held not-ready

for 10 microseconds.

Further­

more, the Memory Ready function actually changes the

system E signal; devices which require a real-time

clock must use a different clock source.

Address Set-up time can be easily increased from one­

quarter bus cycle to one-half bus cycle by forming

a new E' signal, E '=E /\ Q. Since this reduces E'

up-time to one-quarter bus cycle, Memory Ready can be

used to regain the minimum E-time, or increase it,

as necessary. It is also possible to use additional

timing circuitry to apportion set-up and enable per­

formance as desired.

2.4.4 Multi-Processors

Shared-bus multiprocessor systems must arbitrate

between possibly multiple and simultaneous requests

for memory access. Exactly one processor must then

gain the (temporary) use of the bus; remaining pro­

cessors are "held off" using the Memory Ready Control

signal. Naturally, any processor can only be held

-

2.4.4 (Continued)

not-ready a maximum of 10 microseconds.

As each memory request is resolved,

MREADY for that processor is brought HIGH, and that

processor delivers the trailing edge of E which

completes the data transfer.

3.0 SOFTWARE ARCHITECTURE

3.1 6809 PROGRAMMING MODEL

The 6809 contains four 8-bit registers and five 16-bit
registers which are visible to the programmer:

11 INOEJ llEGISTER

'I INOEJ REGIST.CR

U USER STACK POINTER

S HARDWARE STACK POINTER

PC

A a

0

OP

POINTER REGISTERS

PROGRAM COUNTER

ACCUMUl.ATORS

DIRECT PAGE REGISTER

CC-CONDITION CODE REGISTER

CARRY-BORROW

OVERFl.OW

ZERO

NEGATIVE

INTERRUPT REQUEST MASK

HAl.f CARRY

fAST INTERRUf>T REQUEST MASK

ENTIRE STATE ON STACK

The Double-Accumulator D consits of the two 8-bit

accumulators concatenated A:B. The A-register is the

MS byte of the pair while the B-register is the LS byte.

3.1.1 Accumulators (A, B & D)

The A and B registers are general purpose accum­

ulators used for arithmetic calculations and data
manipulation. With the exception of ABX, D/JA and 16-bit
operations, the two accumulators are completely
interchangeable. In the catenated form the A-reg­
ister is the MS byte of the pair thru forming the
16-bit Double Accumulator, or D-register.

3.1.2 Direct Page Register (DP

The Direct Page register defines the MS byte to
be used in the direct mode of addressing; the DP
is catenated with the byte following the direct­
mode op code to form a 16-bit effective address.
The DP will be initialized to $00 by RESET for
6800 compatibility.

3. 1.3 Condition Code Register (CC

The Condition Code register defines the state of
the processor flags at any given time. The bits
in the CC are:

B7 B6 BS B4 B3 B2 Bl BO

IEjF[1-1!1IN\z v\c\

Bit 5 and bits 3-0 are set as the result of instruc­

tions that manipulate data; for details, see con­
dition code section for each instruction.

-

3.1.3.1 Bit 0 (C)

bO is the Carry flag, and is usually gen­

erated by the binary carry from the MSB

of the operation (ADC, ADD) -- this is an

unsigned overflow. However, C is also

used to represent a 'borrow' (a NOT-carry)

to and from subtract-like instructions

(CMP, NEG, SBC, SUB), and MUL uses C to

represent b7 of the result for round-off

purposes. Data-movement and logical operations

do not affect C, while arithmetic operations

set C, if appropriate.

3.1.3.2 Bit 1 (V)

bl is the overflow flag, and is set by an

operation which causes a two's-complement

arithmetic overflow. The overflow is, of

course, detected in an operation if the

carry from the MSB in the binary ALU does

not match the carry from the MSB-1. Loads,

stores, and logical operations clear V,

while arithmetic operations set V if appro­

priate.

3.1.3.3 Bit 2 (Z)

b2 is the zero flag, and is set if the re­

sult of the previous operation was ident­

ically zero. Loads, stores, logical and

arithmetic operations set Z if appropriate.

....

3.1.3.4 Bit 3 (N)

b3 is the negative flag, which contains
exactly the value of the MSB of the result

of the preceeding operation. Thus, a

negative two's complement result will leave

N set. Loads, stores, logical and arithmetic

operations all set N if appropriate. If a
two's complement overflow occurs, the sign

of the result (and the N-flag) will be in­

correct. For this reason two's complement

branches use the expression (N~V) to obtain

an always-valid sign result.

3.1.3.5 Bit 4(I)

b4 is the IRQ mask bit. The processor will

not recognize interrupts from the IRQ line

if this bit is Set. NMI, FIRQ, IRQ, RESET
and SWI all Set I; SWI2 and SWI3 do not

affect I.

3.1.3.6 Bit 5 (H)

bS is the half-carry bit, and is used to

indicate a carry from b3 in the ALU as a

result of an 8-bit addition only (ADC or

ADD). This bit is used by the DAA instruc­
tion to perform a (BCD) decimal add adjust

operation. The state of the H flag is

undefined in all subtract-like instructions

to allow for future expansion; software must
not depend upon a particular state of the

H flag after subtract operations.

.....

3.1.3.7 Bit 6 (F)

b6 is the FIRQ mask bit. The processor

will not recognize interrupts from the

FIRQ line if this bit is set. NMI, FIRQ,

SWI and RESET all Set F; IRQ, SWIZ and SWI3

do not affect F.

3.1.3.8 Bit 7 (E)

b7 is the entire flag, and indicates either

the complete machine state (all the registers)

or the subset state (PC and CC) is being
stacked. E is used by the RTI instruction

to determine the extent of the unstacking,

thus allowing some interrupt-handling routines

which work with both fast and slow interrupts.

FIRQ will clear E while IRQ, NMI, SWI, SWI2,

and SWI3 will set E before stacking. The E

bit associated with the saved registers is

in the E flag position in the CC of the

stacked state; the E bit in the processor

has little meaning.

3.1.3.9 Interrupt Effects on CC

After accepting an IRQ interrupt, the pro­

cessor will set the E flag, save the entire

machine state, then set the I mask bit to

mask out the present and further IRQ inter­

rupts. After clearing the original interrupt,

the user may reset the I mask bit to allow

multiple-level IRQ interrupts. The IRQ

interrupt will not affect the F mask bit,

thus, in general a FIRQ may interrupt an IRQ

handler. The machine state as it was before the

interrupt will be recovered by the associated RTI.

3.1.3.9 (Continued)

After accepting a FIRQ interrupt, the pro­
cessor will clear the E flag, save the sub­
set machine state (return address and CC),
then set both the I and F-bi ts to mask out the
present FIRQ and further IRQ and FIRQ inter­
rupts. After clearing the original inter­
rupt, the user may reset the I and F bits
to allow multiple-level interrupts. The
PC and CC (including the previous state of
the mask bits) will be recovered by the
associated RTI.

-

3.1.4 Index Register (X, Y)

The index registers are used in indexed mode
addressing. They provide a 16-bit address to
be added to an optional offset (of up to 16-bits)
for indexed instructions; the result of the addi­
tion is the effective address of the instruction.
For more details see the section on addressing
modes. The X and Y registers are essentially

equivalent in usage and support the same instruc­
tions. Because automatic pre-increment and post­
decrement options are available on indexed-mode
operations, these registers may be used to easily
implement software stacks, queues, and buffers.

3.1.5 Stack Pointers (U , S)

The stack pointer registers contain addresses that
point to the top of a push-down/pop-up stack. Data
and machine state can be pushed onto the stack
(stored at the next memory address to that "pointed"
to by the U or S) or pulled from the stack in a
last-in first-out manner. Pushes decrement the
stack pointer before the data is stored while pulls
increment the stack pointer after the data is re­
covered; the stack pointers point at the last
byte placed on the stack. The S is used by the
hardware to automatically store subset or entire

machine states during subroutines and interrupts.
The User Stack (U) is controlled exclusively by
the programmer and can be used to pass arguments
to and from subroutines. Both the U and S have
the same indexed-mode addressing capabilities as

3. 1 .5 (Continued)

the X and Y index registers; the stack pointers are en­

hanced index registers (although the operation as LE~

is slightly different on the stack registers). This al~

lows the 6809 to ·be used efficiently as a stack pro­

cessor, greatly enhancing its ability to support high­
er level languages.

3. 1.6 Program Counter (PC)

The PC is used by the hardware to point to the
next instruction to be executed by the processor.
Limited indexed-mode addressing is available on
the PC (i.e., auto-increment/decrement is not
available). For notational convenience the des­
cription of each instruction assumes that the
program counter points one location past the last
byte of the op code, as it would after decqding the
instruction. As additional bytes are used by the
instruction the PC always points to the next unused
byte.

EXAMPLE: The branch instructions are available
in either short or long forms; in general the short
form takes a one-byte opcode, while the long form
takes two bytes. After decoding the opcode, the
PC points at either a one- (short branch) or two­
byte (long) immediate value, which is taken into
the machine for addition to the PC. If the branch
is not taken, the addition never happens and the PC
remains pointing to the next instruction. Indexed­

mode instructions also have variable length fields.

3. 1.7 Stack Programming Techniques

Good programming practice indicates use of space
in the hardware stack for temporary storage. The
stack pointer is decremented by the amount of
storage required (LEAS -TEMPS, S) making space for
temporaries from 0,S through TEMPS-1 ,S. This
technique is structured, position-independent,
and allows recursion.

Global variables may be considered local to the
highest-level routine, and allocated storage there.
Unfortunately, access to these same variables re­
quires different offset values depending upon sub­
routine depth, itself a dynamic parameter which may
not be readily available. This problem can be
solved by assigning one pointer to mark a location
(TFR S,U) on the hardware stack. If this is done
immediately prior to allocating global storage,
all variables will be available at a constant,
positively-offset location from the stack mark.
Unstructured multi-level returns are also available;
this feature may be useful for aborting the entire
package and cleaning up the stack.

Because the hardware stack pointer may be pre­
empted at any time by hardware interrupts, it is
an extremely dangerous practice to utilize data
referred to by negative offset with respect to the

hardware stack pointer (SP).

3. 2 ADDRESSING

*

3.2.1 Register Addressing Notation*

Accumulator ACCA or ACCB
Double Accumulator
Index Register
Stack Register
Program Counter
Direct Page Register
Condition Code Register

3.2.2 Register Addressing Modes

3.2.2. 1 Accumulator

ACCA:ACCB
IX or I Y
SP or US
PC (PC)
DPR (DP)

CCR (cc)

3.2.2.2 Double-Accumulator

3.2.2.3 Inherent

or
(x
(S

(A or B)
ACCO (D)
or y)

or U)

The longer-form notation (i.e., ACCA, ACCB, ACCO, IX,
IY, SP, US, PC, DPR, CCR) is used by this document to
describe the CPU registers. The short-form notation
(i.e., A, B, D, X, Y, S, U, PC, DP, CC) is used by the
6809 Assembler.

-

3. 2. 3 Memorl Addressing Notation

() =

EA =

The (8-Bit) data pointed to by the en-
closed (16-Bit) address

The Effective Address; a pointer into

memory created as a result of an address­

ing mode.

M = (EA)= the data in the address space ("MEMORY")

pointed to by the effective address

MI = Memory Immediate Addressing; the data

immediately following the last byte of

the op code

dd

DDDD

p

Q
yyyy

zz
xx
*

=

=

=

=

8-Bit Offset (or a relative distance to a

label which evaluates to 8-bits)

16-Bit Offset (or a relative distance to

a label)

Immediate, Direct, Indexed, Extended

Accumulator, Direct, Indexed, Extended

Offset such that -64K < YYYY < 64K

= Any indexable register (IX,IY,SP, or US)

8-Bit hex value

= PC at start of present instruction

*' = Start of next instruction

IN = Indexed Addressing only.

= Immediate Addressing Byte(s) Follow(s)

$ = Hex Value Follows

Binary Value Follows

< = Before indexing: force one-byte offset form

(for known forward reference)

= Before absolute address; force direct

addressing (obtain warning if SETDP f. MS Byte value)

= Before indexing; force two-byte offset form

> = Before absolute address; force extended

addressing.

= Indexing symbol
l) = Indirection

-

3.2.3 (Continued)

It is understood for convenience of description
that the PC points one byte past the last byte
of the instruction op code at the beginning of
instruction execution.

* The assembler uses brackets 11
[]

11 to indicate indirec­
tion. This avoids evaluation confusion with paren­
theses 11

()
11 which are allowed in expressions.

-

3.2.4 Memory Addressing Modes

3.2.4.l Inherent

Example: MUL

Inherent addressing includes those instructions
which have no addressing options.

3.2.4.2 Accumulator

Example: CLRA
CLRB

Accumulator addressing includes those instructions
which operate on an accumulator.

3.2.4.3 Immediate EA = PC

Example: LOA #CR
LOB #7
LOA #$FO
LOB #%11110000
LOX #$8004

Immediate addressing refers to the location(s)
following the last byte of the op code. This
mode is used to hold a value which is known at
assembly time and which will not be changed during
program execution.

3.2.4.4 Absolute (Immediate Indirect)

Example: LOA $8004
LOB CAT

Absolute addressing refers to an exact 16-bit
location in the memory address space, and is
especially useful for transactions with peri­
pherals (I/0).

3.2.4.4 (Continued)

There are three program-selectable modes of
absolute addressing, namely: Direct, Extended,
and Extended Indirect. Certain instructions
(SWI, SWI2, SWI3), and the interrupts, use an
inherent absolute address to function similarly
to Extended Indirect mode addressing. These
instructions are said to have "Absolute Indirect"
addressinq.

-

3.2.4.4.1 Direct EA= DPR:(PC)

LOA <CAT

Direct addressing uses the immediate byte of
the instruction as a one-byte pointer into a
single 256-byte "page" of memory. (The term
"page" refers to one of the 256 possible com­
binations of the high-order address bits.) The
particular page in use is fixed by loading the

Direct Page Register with the desired high-order
byte (by transferring from or exchanging with
another register.) Thus, the effective address
consists of a high-order byte (from the Direct
Page Register) catenated with a low-order byte
(from the instruction).

This mode may allow economies of both program

space and excution time as compared to other
absolute or indexed modes.

3.2.4.4.2 Extended EA= (PC):(PC+l)

Example: LOA >CAT

Extended addressing uses a 16-bit immediate

value (and thus contained in the two bytes
followin9 the last byte of the op code) as the
exact memory address value.

3.2.4.4.3 Extended Indirect EA= ((PC):(PC+l))

Example: LOA [$FOOO]

Extended indirect addressing uses a 16-bit
immediate value as an absolute address from
which to recover the effective address.

-

3.2.4.4.3 (Continued)

This mode is inherently used by interrupts
to vector to the handling routine; and may
be used to create vector tables in a cust­
omized system which allow the use of standard
software packages.

Although Extended Indirect is a logical
extension of Extended addressing, this mode
is implemented using an encoding of the post­
byte under the indexed addressing group.

....

3.2.4.5 Register

Example: TFR X,Y

Register addressing refers to the selection of
various on-board registers.

3.2.4.6 Indexed (Register Indirect)

The 6809 includes extremely powerful indexing
capabilities. There are five indexable registers
(X,Y,S,U, and PC) with many options (constant­
offset, accumulator offset using A,B, or D,
auto-increment or -decrement, and indirection).
These options are selected by complex coding of
the first byte after the op code byte(s) of
indexed-mode instructions. Most 6800 in~exed­

mode instructions will map into an equivalent
two bytes on the 6809.

3.2.4.6. l Constant-Offset Indexed

Examples: LOA 'x
LOB 0,Y

LOX 64000,S
LOY -64000,U
LOA 17,PC
LOA THERE,PCR

Constant-offset indexing uses an optional two's
complement offset contained in either the post
byte of the instruction as a bit-field or as an
immediate value. This offset may be an absolute
quantity, a symbol, or an expression and may
range from zero to a 16-bit binary value which
may be specified either positive or negative with
an absolute value less or equal to 216 . The off­
set value is temporarily added to the pointer
value from the selected register (X,Y,U,S, or PC);
the result is the effective address which points
into memory.

A number of hardware modes are available to
reduce the number of instruction bytes for
various options. The majority of 6800 indexed­
mode instructions will still need only two

bytes on the 6809.

The notation THERE, PCR causes the assembler
to compute the relative distance between the
location of the symbol THERE elsewhere in the
program, and the present value of the program

.....

3.2.4.6.l (Continued)

*

counter. The computed value is used as an
immediate value in the instruction, indexed from
the program-counter. This notation is painlessly

position-independent.

Because a 16-bit offset is allowed, the (nec­
essarily a~olute) address of the indexable data
may be carried as a constant value in the index­
ing instructions. This would allow the 11 index
register" to be simultaneously used for index­
ing and counting using LEA.

With exceptions for 6800 compatibility, the 6809
assembly language uses a comma (,) to indicate a single
level of indexed indirection. That is, LOX ,Y should
be interpreted as: x~(Y):(Y+l) while LOX Y could
be: X~Y. This symbology allows the programmer
access to a large number of language-compatible macros,
and forces the addressing symbology to be apparent for
many different instructions. The instructions PSH, ~UL,

TFR, and EXG are also exceptions.

3.2.4.6.2 Constant-Offset Indexed Indirect

Examples: LOA [,X]*
LOB [0,Y]
LOX [64000,S]
LOY [-64000,U]
LOA [17,PC]
LOA [THERE,PCR]

* Brackets indicate indirection to the assembler.

3.2.4.6.2 (Continued)

Constant-offset indexed indirect addressing
functions in two stages (like all indirects).
First an indexed address is formed by temp­
orarily adding the offset-value contained in
the addressing byte(s) to the value from the
selected pointer register (X,Y,S,U, or PC).
Second, this address is used to recover a
two-!:yte absolute pointer which is used as the
"effective address. 11

This mode allows the programmer to use a "table
of pointers" data structure, or to do I/0 through
absolute values stored on the stack.

3.2.4.6.3 Accumulator Indexed

Examples: LDA A,X
LDA B,Y
LDA D,U

Accumulator-indexed addressing uses an accum­
ulator (A,B, or D) as a two's complement offset
which is temporarily added to the value from
the selected pointer register (X,Y,S, or U) to
form the effective address.

3.2.4.6.4 Accumulator Indexed Indirect

Examples: LDA [A,X]
LDA [B,Y]
LDA [D,U]

Accumulator-indexed indirect addressing uses an
accumulator (A,B,or D) as a two's complement

-

3.2.4.6.4 (Continued)

offset which is temporarily added to the value

from the selected pointer register (X,Y,S, or U).

The resulting pointer is then used to recover

another pointer from memory (thus, the indirect

designation) which is then used as the effective

address.

3.2.4.6.5 Auto-Increment

Examples: LDA ,X+ LDX ,X++

LDA ,Y+ LDX ,Y++

LDA ,S+ LDX ,U++

LDA ,U+ LDX ,S++

Auto-increment addressing uses the value in

the selected pointer register (X,Y,S, or U)

to address a one-or two-byte value in memory.

The register is then incremented by one (single

+) or two (two +'s). No offset is permitted.

3.2.4.6.6 Auto-Increment Indirect

Examples: LDA (,X++J
LDB [, Y++ J
LDD (,S++]

LDX (,U++J

Auto-increment indirect addressing uses the

value in the selected pointer register (X,Y,S,

or U) to recover an address value from memory.

This value is used as the effective address.

The register is then incremented by two (++); the

indirected increment by one is illegal. No
offset is permitted.

3.2.4.6.7 Auto-Decrement

Examples: LDA ,-x LDX ,--x
LDA '-Y LDX ' - -Y
LDA ,-u LDX ,--u
LDA ,-s LDX ,--s

Auto-decrement addressing first decrements the

selected pointer register (X,Y,S, or U) by

one (-) or two (--) as selected by the user.

The resulting value is then used as the effective

address. No offset is permitted.

3.2.4.6.8 Auto-Decrement Indirect

Examples: LDA [' - -x]
LDB [' - -Y]
LDD [, - -U]

LDX [,--SJ
Auto-decrement indirect addressing first decre­

ments the selected pointer register by two (--).

Auto-decrement by one indirect is prohibited in

the assembly language. The resulting value is used

to recover a pointer value from memory; this value

is used as the effective address. No offset is

permitted.

3.2.4.7 Relative

Example: BRA POLE

(Short) Relative addressing adds the value of

the immediate byte of the instruction (an 8-bit

two's complement value) to the value of the

program counter to produce an absolute address.

This addressing mode is always position-in­

dependent.

-

3.2.4.8 Long Relative

Example: LBRA CAT

Long Relative addressing adds the value of the

immediate bytes of the instructions (a 16-bit

two's complement value) to the value of the
program counter to produce an absolute address.

This addressing mode is always position-inde­

pendent.

3.3 INSTRUCTION SET

3.3.1 Operation Notation

+ = i s Transferred to
A = Boolean AND
v = Boolean OR
$ = Boolean EXCLUSIVE-OR

= (overline) = Boolean NOT
= Concatenation

3.3.2 Register Notation

ACCA = A = Accumulator A
ACCB = B = Accumulator B
ACCX = Either ACCA or ACCB
ACCA:ACCB

IX = x =
IV = y =
SP = s =
us = u =
DPR = DP

CCR = cc
PC =
R =

R I =
ALL =
zz =
MSB =
MS BYTE =
LS BYTE -
IXH =
IXL =

=
=

= D = Double Accumulator

Index Register X
Index Register Y
Hardware Stack Pointer
User Stack Pointer
Direct Page Register
Condition Code Register
Program Counter
A Register before the operation;
A,B,D,X,Y,U,S,PC,DP or CC
(usually, only a subset of registers is
legal, these are specified by "Register
Addressing Mode" in the individual in­
structions)
A Register after the operation
All Registers; i.e.,A,B,D,X,Y,U,S,PC,DP & CC
A Pointer Register; i.e., X,Y,U,S
Most-Significant BIT
Most-Significant BYTE
Least-Significant BYTE
MS Byte of Index X
LS Byte of Index X

ABX Add ACCB Into IX

SOURCE FORM: ABX

OPERATION: IX' + IX + ACCB

CONDITION CODE~ Not Affected

DESCRIPTION:

Add the 8-bit unsigned value in Accumulator B into the
X index register.

ADDRESSING MODE: Inherent

ADC Add With Carry Memory Into Register

SOURCE FORMS: ADCA P; ADCB P

OPERATION: R' + R + M + C

CONDITION CODES:

H: Set IFF the operation caused a carry from bit 3 in the
N: Set IFF bit 7 of the result is Set.
z : Set IFF a 11 bits of the result are Clear
v. Set IFF the operation caused an 8-bit two's complement

arithmetic overflow.
c: Set IFF the operation caused a carry from bit 7 in the

DESCRIPTION:

Adds the contents of the carry flag and the memory byte into
an 8-bit register.

REGISTER ADDRESSING MODE: Accumulator

MEMORY ADDRESSING MODES: Immediate
Direct
Indexed
Extended

-

ALU

ALU

ADD Add Memory Into Register - 8 Bit

SOURCE FORMS: ADDA P; ADDB P

OPERATION: R' + R + M

CONDITION CODES:

H: Set IFF the operation caused a carry from bit 3 in the
N : Set IFF bit 7 of the result ; s set
z: Set IFF a 11 bits of the result are Clear
v: Set IFF the operation caused an 8-bit two's complement

arithmetic overflow.
c : Set IFF the operation caused a carry from

DESCRIPTION:

Adds the memory byte into an 8-bit register.

REGISTER ADDRESSING MODE: Accumulator

MEMORY ADDRESSING MODES: Immediate
Direct
Indexed
Extended

' bit 7 in the

-

ALU

ALU

ADD Add Memory Into Register - 16 Bits

SOURCE FORM: ADDO P

OPERATION: R' + R + M:M+l

CONDITION CODES:

H:

N:
z :
v:

Not Affected
Set IFF bit 15 of the result if Set
Set IFF all bits of the result are Clear
Set IFF there was a 16-bit two's complement arithmetic
overflow

C: Set IFF the operation on the MS Byte caused a carry
from bit 7 in the ALU.

DESCRIPTION:

Adds the 16-bit memory value into the 16-bit accumulator.

REGISTER ADDRESSING MODE: Double Accumulator

MEMORY ADDRESSING MODES: Immediate
Direct
Indexed
Extended

-

AND Logical AND Memory Into Register

SOURCE FORMS: ANDA P; ANDB P

OPERATION: R' + RA M

CONDITION CODES:

H: Not Affected
N: Set IFF bit 7 of result i s Set
z : Set IFF all bits of result are Clear
v : Cleared
C: Not Affected

DESCRIPTION:

Performs the logical 11 AND 11 operation between the contents
of ACCX and the contents of M and the result is stored
in ACCX.

REGISTER ADDRESSING MODE: Accumulator

MEMORY ADDRESSING MODES: Immediate
Direct
Indexed
Extended

...

AND Logical AND Immediate Memory Into CCR

SOURCE FORM: ANDCC #XX

OPERATION: R' + R A MI

CONDITION CODES: CCR' +CCR A MI

DESCRIPTION:

Performs a logical "AND" between the CCR and the MI byte
and places the result in the CCR.

REGISTER ADDRESSING MODES: CCR

MEMORY ADDRESSING MODE: Memory Immediate

-

ASL Arithmetic Shift Left

SOURCE FORM: ASL Q

OPERATION: I ! i I i I ~ 0

'bo

CONDITION CODES:

H: Undefined

N: Set IFF bit 7 of the result is Set
Z: Set IFF all bits of the result are Clear
V: Loaded with the result of (b 7 ~ b6) of the original operand.

C: Loaded with bit 7 of the original operand.

DESCRIPTION:

Shifts all bits of the operand one place to the left.
Bit 0 is loaded with a zero. Bit 7 of the operand
is shifted into the carry flag.

ADDRESSING MODES: Accumulator
Direct
Indexed
Extended

ASR Arithmetic Shfft Right

SOURCE FORM: ASR Q

OPERATION:

CONDITION CODES:

H: Undefined
N: Set IFF bit 7 of the result is Set
Z: Set IFF all bits of result are Clear
V: Not Affected
C: Loaded with bit 0 of the original operand.

DESCRIPTION:

Shifts all bits of the operand right one place.
Bit 7 is held constant. Bit 0 is shifted into the carry
flag. The 6800/0V02/03/08 processors do affect the V flag.

ADDRESSING MODES: Accumulator
Direct
Indexed
Extended

-

BCC Branch on Carry Clear

SOURCE FORMS: BCC dd; LBCC DODD

OPERATION: TEMP + MI
IFF C = 0 then PC' + PC + TEMP

CONDITION ·coOES: Not Affected

DESCRIPTION:

Tests the state of the C bit and causes a branch if C
is clear.

MEMORY ADDRESSING MODE: Memory Immediate

EFFECTIVE ADDRESSING MODES: Relative
Long Relative

COMMENTS:

When used after a subtract or compare on unsigned binary
values, this instruction could be called "branch if the
register was higher or the same as the memory operand".

BCS Branch on Carry Set

SOURCE FORMS: BCS dd; LBCS DODD

OPERATION: TEMP + MI
IFF C = 1 then PC' + PC + TEMP

CONDITION CODES: Not Affected

DESCRIPTION:

Tests the state of the C bit and causes a branch if C is set.

MEMORY ADDRESSING MODE: Memory Immediate

EFFECTIVE ADDRESSING MODES: Relative
Long Relative

COMMENTS:

When used after a subtract or compare on unsigned binary
values, this instruction could be called "branch if the
register was lower then the memory operand".

....

BEQ Branch on Equal

SOURCE FORMS: BEQ dd; LBEQ DODD

OPERATION: TEMP + MI

IFF Z = l then PC' +PC+ TEMP

CONDITION CODES: Not Affected

DESCRIPTION:

Tests the state of the Z bit and causes a branch if
the Z bit is set.

MEMORY ADDRESSING MODE: Memory Immediate

EFFECTIVE ADDRESSING MODES: Relative
Long Relative

COMMENTS:

Used after a subtract or compare operation, this instruction
will branch if the compared values - signed or unsigned -
were exactly the same.

BGE Branch on Greater than or Equal to Zero

SOURCE FORMS: BGE dd; LBGE DODD

OPERATION: TEMP+ MI
IFF [N ~ VJ = 0 then PC' + PC + TEMP

C 0 N D IT I 0 N C 0 D E S : N o t af f e c t e d

DESCRIPTION:

Causes a branch if N and V are either both set or both
clear (i.e., branch if the sign of a valid two's complement

result is - or would be - positive).

MEMORY ADDRESSING MODE: Memory Immediate

EFFECTIVE ADDRESSING MODES: Relative
Long Relative

COMMENTS:

Used after a subtract or compare operation on two's
complement values, this instruction will "branch if
the register was greater than or equal to the memory
operand."

-

BGT Branch on Greater

SOURCE FORMS: BGT dd; LBGT DODD

OPERATION: TEMP + MI
IFF Z v [N ~ VJ = 0 then PC' + PC +TEMP

CONDITION CODES: Not affected

DESCRIPTION:

Causes a branch if (N and V are either both set or both

clear) and Z is clear. In other words, branch if the sign

of a valid two's complement result is- or would be - positiv,
and non-zero.

'MEMORY ADDRESSING MODE: Memory Immediate

EFFECTIVE ADDRESSING MODES: Relative
Long Relative

COMMENTS:

Used after a subtract or compare operation on two's
complement values, this instruction will ''branch.if
the register was greater than the memory operand".

BHI Branch if Higher

SOURCE FORMS: BHI dd; LBHI DODD

OPERATION: TEMP + MI
!FF [C v Z] = 0 then PC' +PC +TEMP

CONDITION CODES: Not Affected

DESCRIPTION:

Causes a branch if the previous operation caused neither
a carry nor a zero result.

MEMORY ADDRESSING MODE: Memory Immediate

EFFECTIVE ADDRESSING MODES: Relative
Long Relative

COMMENTS:

Used after a subtract or compare operation on unsigned
binary values this instruction will "branch if the register
was higher than the memory operand. 11 Not useful, in general
after INC/DEC, LD/ST, TST/CLR/COM.

-

BHS Branc.h if Higher or Same

SOURCE FORM: BHS dd; LBHS DODD

OPERATION: TEMP+ MI
IFF C = 0 then PC' +PC+ MI

CONDITION CODES: Not Affected

DESCRIPTION:

Tests the state of the C-bit and causes a branch if C is
clear.

MEMORY ADDRESSING MODE: Memory Immediate

EFFECTIVE ADDRESSING MODES: Relative
Long Relative

COMMENTS:

When used after a subtract or compare on unsigned binary
values, this instruction will "branch if register was
higher than or same as the memory operand." This is a
duplicate assembly-language mnemonic for the single

machine instruction BCC. Not useful, in general, after INC/
DEC, LD/ST, TST/CLR/COM.

...

BIT Bit Test

SOURCE FORM: BIT P

OPERATION: TEMP + R A M

CONDITION CODES:

H: Not Affected

N: Set IFF bit 7 of the result i s Set
z: Set IFF all bits of the result a re Clear
v : Cleared
c: Not Affected

DESCRIPTION:

Performs the logical 11 AND 11 of the contents of ACCX and
the contents of M and modifies condition codes accordingly.
The contents of ACCX or M are not affected.

REGISTER ADDRESSING MODE; Accumulator

MEMORY ADDRESSING MODES: Immediate
Direct
Indexed
Extended

-

BLE Branch on Less than or Equal to Zero

SOURCE FORM: BLE dd; LBLE DODD

OPERATION: TEMP +MI
IFF Z v [N $VJ = 1 then PC' +PC + TEMP

CONDITION CODES: Not affected

DESCRIPTION:

Causes a branch if the "Exclusive OR" of the N and V
bi ts is 1 or if Z = 1. That is, branch if the sign of a valid

two's complement result is - or would be - negative.

MEMORY ADDRESSING MODE: Memory Immediate

EFFECTIVE ADDRESSING MODES: Relative
Long Relative

COMMENTS:

Used after a subtract or compare operation on two's
complement values, this instruction will "branch if the
register was less than or equal to the memory operand".

Ill

BLO Bra~ch on Lower

SOURCE FORM: BLO dd; LBLO DODD

OPERATION: TEMP+ MI
IFF C = 1 then PC' + PC + TEMP

CONDITION CODES: Not affected

DESCRIPTION:

Tests the state of the C bit and causes a branch if
C is Set.

MEMORY ADDRESSING MODE: Memory Immediate

EFFECTIVE ADDRESSING MODES: Relative
Long Relative

COMMENTS:

When used after a subtract or compare on unsigned binary
values, this instruction will "branch if the register was
lower" than the memory operand. Note that this is a duplicate
assembly-language mnemonic for the single machine instruction

BCS. Not useful, in general, after INC/DEC, LD/ST, TST/CLR/COM.

-

BLS Branch on Lower or Same

SOURCE FORM: BLS dd; LBLS DODD

OPERATION: TEMP+ MI
IFF (C v Z) = 1 then PC' +PC+ TEMP

CONDITION CODES: Not affected

DESCRIPTION:

Causes a branch if the previous operation caused either
a carry or a zero result.

MEMORY ADDRESSING MODE: Memory Immediate

EFFECTIVE ADDRESSING MODES: Relative
Long Relative

COMMENTS:

Used after a subtract or compare operation on unsigned
binary values, this instruction will "branch if the
register was lower than or the same as the memory operand."
Not useful, in general, after INC/DEC, LD/ST, TST/CLR/COM.

BLT Branch on Less than Zero

SOURCE FORMS: BLT dd; LBLT DODD

OPERATION: TEMP +MI
!FF [N (±)VJ= 1 then PC' +PC +TEMP

CONDITION CODES: Not affected

DESCRIPTION:

Causes a branch if either, but not both, of the N or V
bits is 1 1. 1 That is, branch if the sign of a valid two's
complement result is - or would - negative.

MEMORY ADDRESSING MODE: Memory Immediate

EFFECTIVE ADDRESSING MODES: Relative
Long Relative

COMMENTS:

Used after a subtract or compare operation on two's
complement binary values, this instruction will "branch
if the register was less than the memory operand."

-

BMI Branch on Minus

SOURCE FORM: BMI dd; LBMI DDDD

OPERATION: TEMP + MI
IFF N = 1 then PC' + PC + TEMP

CONDITION CODES: Not affected

DESCRIPTION:

Tests the state of the N bit and causes a branch if N
is set. That is, branch if the sign of the two's complement
result is negative.

MEMORY ADDRESSING MODE: Memory Immediate

EFFECTIVE ADDRESSING MODES: Relative
Long Relative

COMMENTS:

Used after an operation on two's complement binary
values, this instruction will "branch if the (possibly invalid)
result is minus."

BNE Branch Not Equal

SOURCE FORMS: BNE dd; LBNE DODD

OPERATION: TEMP +MI
IFF Z = 0 then PC'+ PC+ TEMP

CONDITION CODES: Not Affected

DESCRIPTION:

Tests the state of the Z bit and causes a branch if
the Z bit is clear.

MEMORY ADDRESSING MODE: Memory Immediate

EFFECTIVE ADDRESSING MODES: Relative
Long Relative

COMMENTS:

Used after a subtract or compare operation on any binary
values, this instruction will "branch if the register
is (or would be) not equal to the memory operand."

-

BPL Branch on Plus

SOURCE FORM: BPL dd; LBPL DODD

OPERATION: TEMP+ MI
IFF N = 0 then PC' + PC + TEMP

CONDITION CODES: Not affected

DESCRIPTION:

Tests the state of the N bit and causes a branch if

N is clear. That is, branch if the sign of the two's
complement result is positive.

MEMORY ADDRESSING MODE: Memory Immediate

EFFECTIVE ADDRESSING MODES: Relative
Long Relative

COMMENTS:

Used after an operation on two's complement binary
values, this instruction will "branch if the possibly
invalid result is positive."

-

-

BRA Branch Always

SOURCE FORMS: BRA dd; LBRA DODD

OPERATION: TEMP + MI
PC'+ PC+ TEMP

CONDITION CODES: Not Affected

DESCRIPTION:

Causes an unconditional branch.

MEMORY ADDRESSING MODE: Memory Immediate

EFFECTIVE ADDRESSING MODES: Relative
Long Relative

BRN Branch Never

SOURCE FORM: BRN dd; LBRN DODD

OPERATION: TEMP + MI

CONDITION CODES.: Not affected

DESCRIPTION:

Does not cause a branch. This instruction is essentially
a NO-OP, but has a bit pattern logically related to BRA.

MEMORY ADDRESSING MODE: Memory Immediate

EFFECTIVE ADDRESSING MODES: Relative
Long Relative

BSR Branch to Subroutine

SOURCE FORM: BSR dd; LBSR DODD

OPERATION: TEMP + MI
SP'+SP-1, (SP) +PCL
SP'+ SP-1, (SP) + PCH
PC'+- PC+ TEMP

CONDITION CODES: Not affected

DESCRIPTION:

The program counter is pushed onto the stack. The program
counter is then loaded with the sum of the program counter
and the memory immediate offset.

MEMORY ADDRESSING MODE: Memory Immediate

EFFECTIVE ADDRESSING MODES: Relative
Long Relative

-

BVC Branch on Overflow Clear

SOURCE FORM: BVC dd; LBVC DODD

OPERATION: TEMP+ MI
IFF V = 0 then PC' + PC + TEMP

CONDITION CODES: Not Affected

DESCRIPTION:

Tests the state of the V bit and causes a branch if the
V bit is clear. That is, branch if the two's complement

result was valid.

MEMORY ADDRESSING MODE: Memory Immediate

EFFECTIVE ADDRESSING MODES: Relative
Long Relative

COMMENTS:

Used after an operation on two's complement binary values,
this instruciton will "branch if there was no overflow".

...

BVS Branch on Overflow Set

SOURCE FORM: BVS dd; LBVS DODD

OPERATION: TEMP + MI
I FF V = 1 then PC' +PC + TEMP

CONDITION CODES: Not affected

DESCRIPTION:

Tests the state of the V bit and causes a branch if
the v bit is set. That is, branch if the two's complement
result was invalid.

MEMORY ADDRESSING MODE: Memory Immediate

EFFECTIVE ADDRESSING MODES: Relative
Long Relative

COMMENTS:

Used after an operation on two's complement binary
values, this instruction will "branch if there was an
overflow." This instruction is also used after ASL or
LSL to detect binary floating-point normalization.

-

CLR Clear

SOURCE FORM: CLR Q

OPERATION: TEMP + M
M + 00 16

CONDITION CODES:

H : Not affected
N: Cleared
z : Set
v : Cleared
c : Cleared

DESCRIPTION:

ACCX or M is loaded with 00000000. The C-flag is cleared
for 6800 compatibility.

ADDRESSING MODES: Accumulator
Direct
Indexed
Extended

""'

CMP Compare Memory from a Register - 8 Bits

SOURCE FORM: CMPA P; CMPB P

OPERATION: TEMP+ R - M [i.e., TEMP+ R + M + 1]

CONDITION CODES:

H: Undefined
N : Set IFF bit 7 of the result is Set.
z : Set IFF all bits of the result a re Clear.
v: Set IFF the operation caused an 8-bit two's

complement overflow
c: Set IFF the subtraction did not cause a carry from ----

bit 7 in the ALU

DESCRIPTION:

Compares the contents of M from the contents of the
specified register and sets appropriate condition codes.
Neither M nor R is modified. The C flag represents a
borrow and is set inverse to the resulting binary carry.

REGISTER ADDRESSING: Accumulator

MEMORY ADDRESSING: Immediate
Direct
Indexed
Extended

FLAG RESULTS:
(N{I)V) = 1 R . LT. M (2 IS comp)

c = 1 R . LO. M (unsigned)
z = 1 R . EQ. M

-

CMP Compare Memory From a Register - 16 Bits

SOURCE FORMS: CMPD P; CMPX P, CMPY P; CMPU P; CMPS P

OPERATION: TEMP+ R - M:M+l [i . e . , TEMP + R + M : M+ 1 + l]

CONDITION CODES:

H: Unaffected
N: Set IFF bit 15 of the result is Set
Z: Set IFF all bits of the result are Clear.
V: Set IFF the operation caused a 16-bit two's

complement overflow
C: Set IFF the operation on the MS byte did not cause a

carry from bit 7 in the ALU

DESCRIPTION:
Compares the 16-bit contents of M:M+l from the contents
of the specified register and sets appropriate condition
codes. Neither R nor M:M+l is modified. The C flag
represents a borrow and is set inverse to the resulting
binary carry.

REGISTER ADDRESSING: Double Accumulator
Pointer (X, Y, S, or U)

MEMORY ADDRESSING: Immediate
Direct
Indexed
Extended

FLAG RESULTS:
(N G>V) = 1 R . LT. M (2's comp)

c = 1 R . LO. M (unsigned)
z = 1 R . EQ. M

...

COM Complement

SOURCE FORM: COM Q

OPERATION: M1 + O + M

CONDITION CODES:
H: Not affected
N: Set IFF bit 7 of the result is Set
z: Set IFF a 11 bits of the result are Clear
v: Cleared
c: Set

DESCRIPTION:

Replaces the contents of M or ACCX with its one's
complement (also. called the logical complement).
The cabry flag is set for 6800 compatibility.

MEMORY ADDRESSING MODES: Accumulator
Direct
Indexed
Extended

COMMENTS:

When operating on unsigned values, only BEQ and BNE branches

can be expected to behave properly. When operating on two's
complement values, all signed branches are available.

-

•

CWAI Clear and Wait for Interrupt

SOURCE FORM: CWAI #$XX E F H I I]~ N_l_! ___ J ___ ~ --- ---~ I
OPERATION: CCR + CCR A MI {Possibly clear masks}

Set E {entire state saved}
SP 1 + SP - 1 ' {SP} + PCL FF = enable neither
SP 1 + SP 1 ' {SP} + PCH EF = enable IRQ
SP 1 + SP 1 ' {SP} + USL - BF enable FIRQ =
SP 1 + SP 1 ' {SP} + USH - AF enable both =
SP 1 + SP - 1 ' {sp} + IYL
SP 1 + SP - 1 ' {SP} + IYH
SP 1 + SP - 1 ' {SP} + IXL
SP 1 + SP - 1 ' {SP} + IXH
SP I + SP - 1 ' {SP} + DPR
SP 1 + SP - 1 ' {SP} + ACCB
SP 1 + SP - 1 ' {SP} + ACCA
SP 1 + SP - 1 ' {SP} + CCR

CONDITION CODES: Possibly Cleared by the immediate byte.

DESCRIPTION:
The CWAI instruction ANDs an immediate byte with the condition
co~ register which may clear interrupt mask bit(s), stacks the
entire machine state on the hardware stack then looks for an inter­
rupt. When a (non-masked} interrupt occurs, no further machine
state will be saved before vectoring to the interrupt handling
routine. This instruction replaced the 6800 1 s CLI WAI sequence, but
does not tri-state the buses.

ADDRESSING MODE: Memory Immediate

COMMENTS:
An FIRQ interrupt may enter its interrupt handler with its
entire machine state saved. The RTI will automatically return
the entire machine state after testing the E bit of the re­
covered CCR.

..

DA Decimal Addition Adjust

SOURCE FORM: DAA

OPERATION: ACCA' + ACCA + CF(MSN):CF(LSN)
where CF i s a Correction Factor, as follows:
The C. F. for each nybble (BCD digit)
separately, and is either 6 or 0.

Least Significant Nybble
CF(LSN) = 6 IFF l) H = l

or 2) LSN > 9

Most Significant N~bble
CF(MSN) = 6 IFF l) c =

or 2) MSN > 9

or 3) MSN > 8 and

CONDITION CODES:
H: Not affected
N: Set IFF MSB of result is Set
Z: Set IFF all bits of the result are Clear

V: Not defined.

is determined

LSN > 9

C: Set if the operation caused a carry from bit 7 in the ALU,
or if the carry flag was Set before the operation.

DESCRIPTION:
The sequence of a single-byte add instruction on ACCA (either
ADDA or ADCA) and a following DAA instruction results in a
BCD addition with appropriate carry flag. Both values to be
added must be in proper BCD form (each nybble such that:
0 ~ nybble ~ 9). Multiple-precision additions must add the
carry generated by this DA into the next higher digit during
the add operation immediately prior to the next DA.

ADDRESSING MODE: ACCA

-

DEC Decrement

SOURCE FORM: DEC Q

OPERATION: M' + M - 1 [i.e., M' + M + FF 16 J

CONDITION CODES:

H: Not affected
N: Set IFF bit 7 of result is Set
Z: Set IFF all bits of result areClear
v: Set IFF the original operand was 10000000

c : Not affected

DESCRIPTION:

Subtract one from the operand. The carry flag
is not affected, thus allowing DEC to be a loop­
counter in multiple-precision computations.

MEMORY ADDRESSING MODES: Accumulator
Direct
Indexed
Extended

COMMENTS:

When operating on unsigned values only BEQ and BNE

branches can be expected to behave consistently. When

operating on two's complement values, all signed branches

are available.

...

EOR Exclusive OR

SOURCE FORMS: EDRA P; EORB P

OPERATION: R' + R ~ M

CONDITION CODES:

H: Not affected
N: Set IFF bit 7 of result is Set
z: Set IFF a 11 bits of result are Clear
v: Cleared
c: Not affected

DESCRIPTION:

The contents of memory is exclusive - ORed into an 8-bit
register.

REGISTER ADDRESSING MODES: Accumulator

MEMORY ADDRESSING MODES: Direct
Extended
Immediate
Indexed

-

EXG Exchange Registers

SOURCE FORM: EXG Rl, R2

OPERATION: Rl ++ R2

CONDITION CODES: Not affected (unless one of the registers is CCR)

DESCRIPTION:

Bits 3-0 of the immediate byte of the instruction define
one register, while bits 7-4 define the other, as follows:

0000 = A:B 1000 = A
0001 = x l 00 l = B
0010 = y 1010 = CCR
0011 = us l 011 = DPR
0100 = SP 1100 = Undefined
01 0 l = PC 11 0 l = Undefined
0110 = Undefined 111 0 = Undefined
0111 = Undefined 111 l = Undefined

Registers may only be exchanged with registers of like size;
i.e., 8-bit with 8-bit, or 16 with 16.

ADDRESSING MODES: Inherent

...

INC Increment

SOURCE FORM: INC Q

OPERATION: M' + M + 1

CONDITION CODE:

H: Not affected
N : Set IFF bit 7 of the result is Set
z : Set IFF all bits of the result a re Clear
v : Set IFF the original operand was 01111111.
c : Not affected

DESCRIPTION:

Add one to the operand. The carry flag is not affected, thus

allowing INC to be used as a loop-counter in multiple-precision

computations.

MEMORY ADDRESSING MODES: Accumulator
Direct
Indexed
Extended

COMMENTS:

When operating on unsigned values, only the BEQ and BNE branches

can be expected to behave consistently. When operating on two's

complement values, all signed branches are correctly available.

-

JMP Jump to Effective Address

SOURCE FORM: JMP

OPERATION: PC'+ EA

CONDITION CODES: Not affected

DESCRIPTION:

Program control is transferred to the location equivalent
to the effective address.

ADDRESSING MODES: Direct
Indexed
Extended

JSR Jump to Subroutine at Effective Address

SOURCE FORM: JSR

OPERATION: SP I + SP - 1'

SP' +SP - 1,
PC' + EA

(SP) + PCL
(SP) + PCH

Condition Codes Not affected

DESCRIPTION:

Program control is transferred to the Effective Address
after storing the return address on the hardware stack.

ADDRESSING MODES: Direct
Indexed
Extended

LO Load Register from Memory - 8 Bit

SOURCE FORMS: LOA P; LOB P

OPERATION: RI + M

CONDITION CODES:
H : Not affected
N: Set !FF bit 7 of loaded data is Set
z : Set !FF all bits of loaded data are Clear
v : Cleared
c : Not affected

DESCRIPTION:
Load the contents of the addressed memory into the
register.

REGISTER ADDRESSING MODE: Accumulator

MEMORY ADDRESSING MODES: Immediate
Direct
Indexed
Extended

...

LO Load Register from Memory - 16 Bit

SOURCE FORM: LOO P; LOX P; LOY P; LOS P; LOU P

OPEATION: R' + M:M+l

CONDITION CODES:
H: Not affected
N: Set IFF bit 15 of loaded data is Set
Z: Set IFF all bits of loaded data are Clear
V: Cleared
C: Not affected

DESCRIPTION:

Load the contents of the addressed memory {two consecutive
memory locations) into the 16-bit register.

REGISTER ADDRESSING MODES: Double Accumulator
Pointer (X, Y, S, or U)

MEMORY ADDRESSING MODES: Immediate
Direct
Indexed
Extended

-

LEA Load Effective Address

SOURCE FORM: LEAX, LEAY, LEAS, LEAU

OPERATION: R' + EA

CONDITION CODES:

H: Not affected
N: Not affected
Z: LEAX, LEAY: Set !FF all bits of the result are Clear.

LEAS, LEAU: Not affected
V: Not affected
C: Not affected

DESCRIPTION:

Form the effective address to data using the memory
addressing mode. Load that address, not the data itself,
into the pointer register.

LEAX and LEAY affect Z to allow use as counters and for 6800
INX/DEX compatibility. LEAU and LEAS do not affect Z to allow
for cleaning up the stack while returning Z as a parameter to

a calling routine, and for 6800 INS/DES compatibility.

REGISTER ADDRESSING MODE: Pointer (X, Y, S, or U)

MEMORY ADDRESSING MODE: Indexed

...

•

LSL Logical Shift Left

SOURCE FORM: LSL Q

OPERATION:

CONDITION CODES:

H: Undefined

N : Set !FF bit 7 of the result is Set
z : Set !FF all bits of the result are Clear
v: Loaded with the result of (b7 Q) b6) of the original

operand.
c : Loaded with bit 7 of the original operand.

DESCRIPTION:
Shifts all bits of ACCX or Mone place to the left.
Bit 0 is loaded with a zero. Bit 7 of ACCX or M is
shifted into the carry flag. This is a duplicate
assembly-language mnemonic for the single machine in­
struction ASL.

ADDRESSING MODES: Accumulator
Direct
Indexed
Extended

LSR Logical Shift Right

SOURCE FORM: LSR Q

OPERATION: 0 -+ I f
b7

1 I 1 I I I-+ CU
bo

CONDITION CODES:
H: Not affected
N: Cleared
Z: Set IFF all bits of the result are Clear
V: Not affected
C: Loaded with bit 0 of the original operand

DESCRIPTION:

Performs a logical shift right on the operand. Shifts
a zero into bit 7 and bit 0 into the carry flag.
The 6800 processor also affects the V flag.

ADDRESSING MODES: Accumulator
Direct
Indexed
Extended

MUL Multiply Accumulators

SOURCE FORM: MUL

OPERATION ACCA' :ACCB' + ACCA x ACCB

CONDITION CODES:
H: Not affected
N: Not affected
z: Set IFF all bits of the result are Clear
v: Not affected
c: Set IFF ACCB bit 7 of result is Set.

DESCRIPTION:

Multiply the unsigned binary numbers in the accumulators
and place the result in both accumulators. Unsigned
multiply allows multiple - precision operations. The Carry flag

allows rounding the MS byte through the sequence: MUL,ADCA #0.

ADDRESSING MODES: Inherent

-

NEG Negate

SOURCE FORM: NEG Q

OPERATION: M' +O - M i.e., M' +- M + 1

CONDITION CODES:
H: Undefined

N: Set IFF bit 7 of result is Set

Z: Set IFF all bits of result are Clear

V: Set IFF the original operand was 10000000

C: Set IFF the operation did not cause a carry

from bit 7 in the ALU.

DESCRIPTION:

Replaces the operand with its two's complement. The C-flag

represents a borrow and is set inverse to the resulting binary

carry. Note that so 16 is replaced by itself and only in this

case is V Set. The value 00 16 is also replaced by itself, and
only in this case is C cleared.

ADDRESSING MODES: Accumulator

Direct

Indexed

Extended

FLAG RESULTS:
(N©V)= 1 if 0 .LT. M (2 IS comp)

c = 1 if 0 .LO. M (unsigned)
z = 1 if 0 .EQ. M

-

NOP No Operation

SOURCE FORM: NOP

CONDITION CODES: Not affected

DESCRIPTION:

This is a single-byte instruction that causes only the
program counter to be incremented. No other registers
or memory contents are affected.

ADDRESSING MODES: Inherent

OR Inclusive OR Memory into Register

SOURCE FORMS: ORA P; ORB P

OPERATION: R' + R v M

CONDITION CODES:
H: Not affected
N: Set IFF high order bit of result Set
Z: Set IFF all bits of result are Clear
V: Cleared
C: Not affected

DESCRIPTION:

Performs an 11 Inclusive OR 11 operation between the contents
of ACCX and the contents of M and the result is stored
in ACCX.

REGISTER ADDRESS MODE: Accumulator

MEMORY ADDRESS MODES: Immediate
Direct
Indexed
Extended

...

OR Inclusive OR Memory-Immediate into CCR

SOURCE FORM: ORCC #XX

OPERATION: R + R v MI

CONDITION CODES: CCR' +CCR v MI

DESCRIPTION:

Performs an "Inclusive OR 11 operation between the contents
of CCR and the contents of MI, and the result is placed
in CCR. This instruction may be used to Set interrrupt
masks (disable interrupts) or any other flag(s).

REGISTER ADDRESSING MODE: CCR

MEMORY ADDRESSING MODE: Memory Immediate

-

PSHS Push Registers on the Hardware Stack

SOURCE FORM: PSHS register 1 is t
PSHS #Label

[Pc [u J ~TL~[~a · r~ -~c_J
push order

OPERATION:
IFF B7 of MI set, then: SP' + SP - 1 ' (SP) + PCL

SP' + SP - 1 ' (s p) + PCH
IFF B6 of MI set, then; SP' + SP - 1 ' (SP) + USL

SP' + SP - 1 ' (SP) + USH
IFF BS of MI set, then: SP' + SP - 1 ' (SP) + IYL

SP' + SP - 1 ' (SP) + IYH
IFF B4 of MI set, then: SP' + SP - 1 ' (SP) + IXL

SP' + SP - 1 ' (SP) + IXH
IFF B3 of MI set, then: SP' + SP - 1 ' (SP) + DPR
IFF B2 of MI set, then: SP' + SP - 1 ' (SP) + ACCB
IFF Bl of MI set, then: SP' + SP - 1 ' (SP) + ACCA
IFF BO of MI set, then: SP' + SP - 1 ' (s p) + CCR

CONDITION CODES: Not affected

DESCRIPTION:

Any, all, any subset, or none of the MPU registers are
pushed onto the hardware stack, (excepting only the
hardware stack poi n t er i ts e 1 f) .

MEMORY ADDRESSING MODE: Memory Immediate

-

PSHU Push Registers on the User Stack

SOURCE FORM: PSHU register list
PSHU #LABEL

[;_[~_J_ ~__j _x 1 o_PJ __ ~]~A-='- _c:j
OPERATION:

push order --.------~

IFF B7 of MI set, then: us· + us - 1 ' (US) + PCL
us· + us - 1 ' (US) + PCH

IFF B6 of MI set, then: us· + us - 1 ' (US) + SPL
us· + us - 1 ' (us) + SPH

IFF B5 of MI set, then: us• + us - 1 ' (US) + IYL
us· + us - 1 ' (us) + IYH

IFF B4 of MI set, then: us· + us 1 ' (US) IXL - +

us• + us - 1 ' (us) + IXH
IFF B3 of MI set, then: us· + us - 1 ' (us) + DPR
IFF B2 of MI set, then: us· + us - 1 ' (US) + ACCB
IFF Bl of MI set, then: us· + us - 1 ' (us) + ACCA
IFF BO of MI set, then: us· + us - 1 ' (US) + CCR

CONDITION CODES: Not affected

DESCRIPTION:

Any, all, any subset, or none of the MPU registers are
pushed onto the user stack (excepting only the user
stack pointer itself).

MEMORY ADDRESSING MODE: Memory Immediate

-

PULS Pull Registers from the Hardware Stack

SOURCE FORM: PULS register list
PULS #LABEL

~-c ____ I .. ~-·-J _ _: _____ L~----~--~-;----~---1~1~-~]
OPERATION: pull order

IFF BO of MI set, then: CCR' + (s p) ' SP'+ SP + 1

IFF Bl of MI set, then: ACCA'+ (s p) ' SP'+ SP +

IFF B2 of MI set, then: ACCB'+ (s p) ' SP' + SP + l
IFF 83 of MI set, then: DPR' + (s p) ' SP'+ SP + l
IFF 84 of Mi set, then: IXH' + (s p) ' SP'+ SP + l

IXL' + (s p) ' SP'+ SP + l
IFF 85 of MI set, then: IYH' + (s p) , SP'+ SP + l

IYL' + (s p) ' SP'+ SP + l
IFF 86 of MI set, then: USH' + {SP), SP'+ SP + l

USL' + (s p) ' SP'+ SP + l
IFF 87 of MI set, then: PCH' + {SP), SP'+ SP + l

PCL' + (s p) ' SP'+ SP +

CONDITION CODES:

May be pulled from stack, otherwise unaffected.

DESCRIPTION:

Any, all, any subset, or none of the MPU registers are
pulled from the hardware stack, (excepting only the
hardware stack pointer itself). A single register may be

"PULLED" with condition-flags set by loading auto-increment
from stack (EX: LDA, S+).

MEMORY ADDRESSING MODE: Memory Immediate

...

PULU Pull Registers from the User Stack

SOURCE FORM: PULU register list
PULU #LABEL

' ' i ' 1
I ' PC s y X 1 DP I B :

_ _l ______ .. J .. _____ L ..
OPERATION: < pull order

IFF BO of MI set, then: CCR I + (us) ' us' + us + 1

IFF Bl of MI set, then: ACCA'+ (us) ' us'+ us + 1

IFF B2 of MI set, then: ACCB'+ (US), us' us + 1 +
IFF B3 of MI set, then: DPR' + (us) ' us' + us + 1

IFF B4 of MI set, then: IXH' + (US), us'+ us +

IXL' + (US), us'+ us + 1

IFF BS of MI set, then: IYH' + (us) ' us'+ us +

IYL' + (us) ' us'+ us + l

IFF B6 of MI set, then: SPH' + (us) ' us'+ us + 1

SPL' + (us) ' us1 + us + 1

IFF B7 of MI set, then: PCH' + (us) ' us'+ us + 1

PCL' + (us) ' US'+ us + 1

CONDITION CODES:

May be pulled from stack, otherwise unaffected.

DESCRIPTION:

Any al 1, any subset, or none of the MPU registers are
pulled from the user stack (excepting only the user
stack pointer itself). A single register may be "PULLED"
with condition-flags set by doing an auto-increment load
from the stack (EX: LDX, U++).

MEMORY ADDRESSING MODE: Memory Immediate

-

··--·---:

A l cc
' ' _, A-•.+••• ...

ROL Rotate Left

SOURCE FORM: ROL Q

OPERATION:

CONDITION CODES:
H: Not affected

N: Set IFF bit 7 of the result is Set

z: Set IFF a 11 bits of the result are Clear

v: Loaded with the result of (b7 ~ b6) of the orginal

operand.

c : Loaded with bit 7 of the original operand

DESCRIPTION:

Rotate all bits of the operand one place left through

the carry flag; this is a nine-bit rotation.

ADDRESSING MODES: Accumulator
Direct
Indexed
Extended

...

ROR Rotate Right

SOURCE FORM: ROR Q

OPERATION:

>

CONDITION CODES:
H: Not affected
N: Set IFF bit 7 of result is Set
Z: Set IFF all bits of result are Clear
V: Not affected
C: Loaded with bit 0 of the previous operand

DESCRIPTION:

Rotates all bits of the operand right one place through
the carry flag; this is a nine-bit rotation. The 6800
processor also affects the V flag.

ADDRESSING MODES: Accumulator
Direct
Indexed
Extended

RTI Return from Interrupt

SOURCE FORM: RTI

OPERATION: CCR I + (SP), SP 1 + SP + l

IFF CCR bit E is SET then: ACCA 1 + (SP), SP' + SP + l
ACCB 1 + (SP), SP' + SP + l
DPR' + (SP), SP' + SP + l
IXH 1 + (SP), SP' + SP + l
IXL 1 + (SP), SP 1 + SP + 1

IYH' + (SP), SP 1 + SP + 1

IYL' + (SP), SP' + SP +

USH' + (SP), SP' + SP + l
USL' + (SP), SP' + SP + 1

PCH' +(SP), SP' + SP + 1

PCL' + (SP), SP' + SP + l
!FF CCR bit E is CLEAR then:

PCH' + (SP), SP 1 + SP + 1

PCL' + (SP), SP 1 + SP +

CONDITION CODES: Recovered from stack

DESCRIPTION:

The saved machine state is recovered from the hardware stack
and control is returned to the interrupted program. If the
recovered E bit is CLEAR, it indicates that only a subset
of the machine state was saved (return address and condition
codes) and only that subset is to be recovered.

ADDRESSING MODE: Inherent

...

RTS Return from Subroutine

SOURCE FORM: RTS

OPERATION: PCH' +(SP), SP' +SP+ l
PCL' + (SP), SP 1 +SP+ l

CONDITION CODES: Not affected

DESCRIPTION:

Program control is returned from the subroutine to the
calling program. The return address is pulled from the
stack.

ADDRESSING MODE: Inherent

I

SBC Subtract with Borrow

SOURCE FORMS: SBCA P; SBCB P

0 PER AT I 0 N : R ' + R - M - C [i . e . , R ' + R + M + C]

CONDITION CODES:
H: Undefined
N: Set IFF bit 7 of the result if Set
Z: Set IFF all bits of the result are Clear
V: Set IFF the operation causes an 8-bit two's complement

overflow
C: Set IFF the operation did not cause a carry from bit 7

in the ALU

DESCRIPTION:

Subtracts the contents of M and the borrow (in the carry flag)
from the contents of an 8-bit register, and places the result
in that register. The C flag represents a borrow and is
set inverse to the resulting binary carry.

REGISTER ADDRESSIN~ MODE: Accumulator

MEMORY ADDRESSING MODES: Immediate

Direct
Indexed
Extended

Ill

SEX Sign E~tended

SOURCE FORM: SEX

OPERATION: If bit 7 of ACCB is set then ACCA' +

else ACCA' +

CONDITION CODES:
H: Not affected
N: Set IFF the MSB of the result i s Set
z: Set IFF all bits of ACCO are Clear
V: Not affected

c: Not affected

DESCRIPTION:
This instruction transforms a two's complement eight-bit
value in ACCB into a two's complement sixteen-bit value
in the double accumulator.

ADDRESSING: Inherent

ST Store Register Into Memory - 8 Bits

SOURCE FORM: STA P; STB P

OPERATION: M1 + R

CONDITION CODES:
H: Not affected
N: Set IFF bit 7 of stored data was Set
Z: Set IFF all bits of stored data are Clear
V: Cleared
C: Not affected

DESCRIPTION:

writes the contents of an MPU register into a memory
location.

REGISTER ADDRESSING MODES: Accumulator

MEMORY ADDRESSING MODES:
Direct
Indexed
Extended

...

ST Store Register Into Memory - 16 Bit

SOURCE FORM: STD P; STX P; STY P; STS P; STU P

OPERATION: M1:M+l 1 + R

CONDITION CODES:
H: Not affected
N: Set !FF bit 15 of stored data was Set
Z: Set !FF all bits of stored data are Clear
V: Cleared
C: Not affected

DESCRIPTION:

Write the 16 bit register into consecutive memory locations

REGISTER ADDRESSING MODES: Double Accumulator
Pointer (X, Y, S, or U)

MEMORY ADDRESSING MODES:
Direct
Indexed
Extended

SUB Subtract Memory from Register - 8 Bit

SOURCE FORMS: SUBA P; SUBB P

OPERATION: R'+ R - M [i.e., R' + R + M + 1]

CONDITION CODES:

H: Undefined
N: Set IFF bit 7 of the result is Set
Z: Set IFF all bits of the result are Clear
V: Set IFF the operation caused an 8-bit two's complement

overflow
C: Set IFF the operation did not cause a carry from bit

7 in the ALU

DESCRIPTION:

Subtracts the value in M from the contents of an 8-bit
register. The C flag represents a borrow and is set
inverse to the resulting binary carry.

REGISTER ADDRESSING MODE: Accumulator

FLAG RESULTS:
(N (±)V) = 1 if R . L T . M (2 IS comp)

c = 1 if R . LO. M (unsigned)
z = 1 if R . EQ. M

MEMORY ADDRESSING MODES: Immediate
Direct
Indexed
Extended

...

SUB Subtract Memory from Register - 16 Bit

SOURCE FORM: SUBD P

OPERATION: R' + R - M:M+l [i.e., R' + R + M:M+l + l]

CONDITION CODES:
H: Unaffected
N: Set !FF bit 15 of result is Set
Z: Set !FF all bits of result are Clear
V: Set !FF the operation caused a 16-bit two's

complement overflow.
C: Set !FF the operation on the MS byte did not cause

a carry from bit 7 in the ALU

DESCRIPTION:
This information subtracts the value in M:M+l from the 16-bit
accumulator. The C flag represents a borrow and is set
inverse to the resulting binary carry.

REGISTER ADDRESSING MODE: Double Accumulator

MEMORY ADDRESSING MODES: Immediate
Direct
Indexed
Extended

SUBTRACT SETS:
(NeV)= 1 if R .LT. M (Z's comp)

c = 1 if R .LO. M (unsigned)
z = 1 if R .EQ. M

SW! Software Interrupt

SOURCE FORM: SWI

OPERATION: Set E (entire state wi 11 be saved)
SP' + SP - l , (SP) + PCL
SP' + SP - l , (s p) + PCH
SP' + SP - l , (SP) + USL
SP' + SP - l , (SP) + USH
SP I + SP - l , (SP) + IYL
SP' + SP - l ' (SP) + IYH
SP' + SP - l , (SP) + IXL
SP' + SP - l , (SP) + IXH
SP' + SP - l , (s p) + DPR
SP' + s p - l , (SP) + ACCB
SP' + SP - l , (SP) + ACCA
SP' + SP - l , (SP) + CCR
Set I , F (mask interrupts)
PC' + (FFFA): (FFFB)

CONDITION CODES: Not affected

DESCRIPTION:

All of the MPU registers are pushed onto the hardware
stack (excepting only the hardware stack pointer itself),
and control is transferred through the SWI vector.

ADDRESSING MODE: Absolute Indirect

SWI2 Software Interrupt 2

SOURCE FORM: SWI2

OPERATION: Set E (entire state saved)
SP' + SP - l ' (SP) + PCL
SP' + SP - l ' (SP) + PCH
SP' + SP - l ' (SP) + USL
SP' + SP - l ' (SP) + USH
SP' + SP - l ' (s p) + IYL
SP' + SP - l ' (SP) + IYH
SP' + SP - l ' (SP) + IXL
SP' + SP - l ' (SP) + IXH
SP' + SP - l ' (SP) + DPR
SP' + SP - l ' (SP) + ACCB
SP' + SP - l ' (SP) + ACCA
SP' + SP - l ' (SP) + CCR
PC' + {FFF4):(FFF5)

CONDITION CODES: Not affected

DESCRIPTION:

All of the MPU registers are pushed onto the hardware
stack (excepting only the hardware stack pointer itself},
and control is transferred through the SWI2 vector. SWI2
is available to the end user and must not be used in
packaged software.

ADDRESSING MODE: Absolute Indirect

...

SWI3 Software Interrupt

SOURCE FORM: SWI3

OPERATION: Set E (entire state will be saved)
SP' + SP - 1 ' (SP) + PCL
SP' + SP - 1 ' (SP) + PCH
SP' + SP - 1 ' (SP) + USL
SP' + SP - 1 ' (SP) + USH
SP' + SP - 1 ' (SP) + IYL
SP' + SP - 1 ' (SP) + IYH
SP' + SP - 1 ' (SP) + IXL
SP' + SP - 1 ' (SP) + IXH
SP' + SP - 1 ' (SP) + DPR
SP' + SP - 1 ' (SP) + ACCB
SP' + SP - 1 ' (SP) + ACCA
SP' + SP - 1, (SP) + CCR
PC' + (FFF2):(FFF3)

CONDITION CODES: Not affected

DESCRIPTION:

All of the MPU registers are pushed onto the hardware
stack (excepting only the hardware stack pointer itself),
and control is transferred through the SWI3 vector.

ADDRESSING MODE: Absolute Indirect

...

SYNC Synchronize to External Event

SOURCE FORM: SYNC

OPERATION: Stop processing instructions

CONDITION CODES: Unaffected

DESCRIPTION:

When a SYNC instruction is executed, the MPU enters a SYNCING
state, stops processing instructions, and waits on an interrupt.
When an interrupt occurs, the SYNCING state is cleared and
processing continues. IF the interrupt is enabled, and the
interrupt lasts 3 cycles or more, the processor will perform
the interrupt routine. If the interrupt is masked or is shorter
than 3 cycles long, the processor simply continues to the next
instruction (without stacking registers). While SYNCING, the
address and data buses are tri-state.

ADDRESSING MODES: Inherent

COMMENTS:
This instruction provides software synchronization with a
hardware process. Consider the high-speed acquisition of data:

7
FAST SYNC

LOA
STA
DECB
BNE

~

WAIT FOR DATA interrupt!
DISC DATA FROM DISC AND CLEAR INTERRUPT
,X+ PUT IN BUFFER

COUNT IT, DONE?
FAST GO AGAIN IF NOT.

The SYNCING state is cleared by any interrupt, and any enabled
interrupt will probably destroy the transfer (this may be used
to provide MPU response to an emergency condition).

The same connection used for interrupt-driven I/0 service may thus be used
for high-speed data transfers by setting the interrupt mask and using SYNC.

•

TFR Transfer Register to Register

SOURCE FORM: TFR R1 ,R2

OPERATION: R2 + R1

CONDITION CODES: Not affected (Unless R2 = CCR)

DESCRIPTION:

Bits 7-4 of the immediate byte of the instruction define
the source register, while bits 3-0 define the destination
register, as follows:

0000 = A:B 1000 = A

0001 = x 1001 = B
0010 = y 101 0 = CCR
0011 = us 1011 = DPR
0100 = SP 1100 = Undefined
0101 = PC 1101 = Undefined
0110 = Undefined 111 0 = Undefined
0111 = Undefined 1111 = Undefined

Registers may only be transferred between registers of
like size; i.e., 8-bit to 8-bit, and 16 to 16.

ADDRESSING MODES: Inherent

TST Test

SOURCE FORM: TST Q

OPERATION: TEMP + M - 0

CONDITION CODES:
H: Not affected
N: Set IFF bit 7 of the result is Set
Z: Set IFF all bits of the result are Clear

V: Cleared
C: Not affected

DESCRIPTION:

Set condition code flags N and Z according to the contents
of M, and clear the V flag. The 6800 processor clears

the C flag.

MEMORY ADDRESSING MODES: Accumulator
Direct
Indexed
Extended

COMMENTS:
The TST instruction provides only minimum information when test­

ing unsigned values; since no unsigned value is less than zero,
BLO and BLS have no utility. While BHI could be used after TST, it

provides exactly the same control as BNE, which is preferred. The

signed branches are available.

•

HARDWARE INSTRUCTION: FIRQ Fast Interrupt Request

OPERATION: IFF F bit CLEAR, then: SP' +SP - 1, (SP) + PCL
SP'+ SP - 1, (SP)+ PCH

CONDITION CODES: Not affected

DESCRIPTION:

Clear E (subset state is saved)
SP'+ SP - 1, (SP)+ CCR
Set F, I (mask further interrupts)
PC' + (FFF6):(FFF7)

A low level on the FIRQ input with the F bit clear causes
this interrupt sequence to occur at the end of the current
instruction. The program counter and condition code register
are pushed onto the hardware stack.
transferred through the FIRQ vector.

Program control is
An RTI returns to the

original task. It is possible to enter an FIRQ handler with the
entire state saved if the FIRQ occurs after CWAI.

ADDRESSING MODE: Absolute Indirect

COMMENTS:

An IRQ interrupt, having lower priority then the FIRQ,
is prevented from interrupting the FIRQ handling routine by

automatic setting of the I flag. This mask bit could then be
reset if priority was not desired. The FIRQ allows operations
on memory, TST, INC, DEC, etc. without the overhead of saving
the entire machine state on the stack.

Ill

HARDWARE INSTRUCTION: IRQ Interrupt Request

OPERATION: IFF I bit CLEAR, then: SP I +- s p - l ' (SP) +- PCL
SP' +- s p - l ' (s p) +- PCH
SP' +- SP - l ' (SP) +- USL
SP' +- s p - l ' (SP) +- USH
SP' +- s p - l ' (SP) +- IYL
SP' +- SP - l ' (SP) +- IYH
SP' +- s p - l ' {SP) +- IXL
SP' +- s p - l ' (SP) +- IXH
SP I +- SP - l ' (SP) +- DPR
SP' +- SP - l ' (SP) +- ACCB
SP' +- s p - l ' (SP) +- ACCA
Set E (entire state saved)
SP' +- s p - l ' {SP) +- CCR
Set I (mask further IRQ. interrupts)
PC' +- {FFF8}:(FFF9)

CONDITION CODES: Not affected

DESCRIPTION:

If the IRQ mask bit I is clear, a low level on the IRQ input
causes this interrupt sequence to occur at the end of the
current instruction. Control is returned to the interrupted
program via an RTI. An FIRQ may interrupt an IRQ handling

routine and be recognized anytime after the IRQ vector is taken.

ADDRESSING MODE: Absolute Indirect

•

HARDWARE INSTRUCTION: NMI Non-Maskable Interrupt

OPERATION: SP' + SP - l ' (SP) + PCL
SP' + SP - l ' (SP) + PCH
SP' + SP - l ' (SP) + USL
SP' + SP - l ' (SP) + USH
SP' + SP - l ' (SP) + IYL
SP' + SP - l ' (SP) + IYH
SP' + SP - l ' (SP) + IXL
SP' + SP - l ' (SP) + IXH
SP' + SP - l ' (SP) + DPR
SP' + SP - l ' (SP) + ACCB
SP' + SP - l , (SP) + ACCA
Set E (entire state save)
SP' + SP - l, (SP) + CCR
Set I, F (mask interrupts)
PC' + (FFFC): (FFFD)

CONDITION CODES: Not affected

DESCRIPTION:
A negative edge on the NMI input causes all of the MPU registers
(except the hardware stack pointer SP) to be pushed onto the
hardware stack, starting at the end of the current instruction.
Program control is transferred through the NMI vector. Suc­
cessive negative edges on the NMI input will cause successive
NMI operations. The NMI operation is internally blocked by
RESET, any NMI-edge will be latched, and the operation will
occur after the first load into the stack pointer (LOS; TFR r,s;

EXGr,s; etc.).

ADDRESSING MODE: Absolute Indirect

...

HARDWARE INSTRUCTION: RESTART

OPERATION: CCR' + XlXlXXXX

DPR' + 0016
PC' +{FFFE):(FFFF)

CONDITION CODES: Not affected

DESCRIPTION:

The MPU is initialized (required after power-on) to start
program execution.

ADDRESSING MODE: Absolute Indirect

-

6809 STACKING ORDER

FFFF

~,5

.3,.S

2, .s
1, s

S,. (U. US) ---+ 0 IS

000 0

l ,,.....--

,>J

1

,,-

PCL...

PCH
UIS ~

UIS H

y L.

YH
x L.

XH
DP
B
A

cc

-i...

T

PU.SH OR. D~R

1'
Puu.. F Ro~ .5TAc.~

~ ToP OF SiACK.

Pu.SH O/IJTO ST+.C..K

Figure 7: 6809 Push/Pull and Interrupt Stacking Order.

...

3.5 HARDWARE INCOMPATABILITIES WITH 6800/6801/6802

1. VMA is not used on the on-chip clock 6809; the processor sends

FFFF16 and R/W=l when no valid access is occurring. This
dummy access can be differentiated from a valid RESET access
by using the IACK signal.

Since the MREADY line is inhibited internally during dummy
access cycles, a slow ROM located in high memory will not

extend dummy cycles.

2. While 6800 required a DBE signal (Data Bus Enable and

strobe), 6801/6802/6809 generate DBE internally.

3.6 SOFTWARE INCOMPATABILITIES WITH 6800/6801/6802

1. The new stacking order on the 6809 exchanges the order

of ACCA and ACCB; this allows ACCA to stack as the MS
byte of the pair.

2. The new stacking order on the 6809 invalidates previous

6800 code which displayed X or PC from the stack.

3. Additional stacking length on the 6809 stacks five

more bytes for each NMI, IRQ, or SWI when compared to
6800/6801/6802.

4. The 6809 stack pointer points directly at the last

item placed on the stack, instead of the location

before the last item as in 6800/6801/6802. In general

this is not a problem since the most-usual method of

pointing at the stack in the 6800/6801/6802 is to

execute a TSX. The TSX increments the value during

I

the transfer, making X point directly at the last

item on the stack.

The stack pointer may thus be initialized one location

higher on the 6809 than in the 6800/6801/6802;

similarly, comparison values may need to be one location

higher.

Any 6800/6801 program which does all stack manipulation

through X (i.e., LDX #CAT, TXS instead of LDS #CAT) will

have an exactly-correct stack translation when assembled

for 6809.

5. Instruction timings in 6809 will, in general, be different

from other 6800-family processors.

6. The 6809 uses the two high-order condition code register

bits. Consequently, these will not, in general, appear

as l's as on the 6800/6801/6802.

7. The 6809 MUL instruction sets the Z-flag (if appropriate);

the 6801 MUL does not.

8. The 6809 TST instruction does not affect the Z-flag, while

6800/6801/6802 TST does clear the C-flag.

9. The 6809 right shifts (ASR, LSR, ROR) do not affect V;
I

the 6800/6801/6802 shifts set v = b7 e b6.

10. The 6801 double-length shift instructions (ASLD, LSRD)

are not exactly emulated by the 6800/6802/6809 sequences

ASLB, ROLA; and LSRA, ROLB. In particular, the Z-flag

represents only the last 8-bit result, and not the 16-

bit quantity.

11. The 6809 H-flag is not defined as having any particular

state after subtract-like operations (CMP, NEG, SBC, SUB);

the 6800/6801/6802 clear the H-flag under these conditions.

12. The 6800/6802 CPX instruction compared MS byte than

LS byte; consequently only the Z-flag was set correctly

for branching. The 6801/6809 instructions (CPX/CMPX)

set all flags correctly.

13. The 6809 instruction LEA may or may not affect the

Z-flag depending upon which register is being loaded;

LEAX and LEAY do affect the Z-flag, while LEAS and LEAU

do not. Thus, the User Stack does not exactly emulate

the index registers in this respect.

•

the transfer, making X point directly at the last

item on the stack.

The stack pointer may thus be initialized one location

higher on the 6809 than in the 6800/6801/6802;

similarly, comparison values may need to be one location

higher.

Any 6800/6801 program which does all stack manipulation

through X (i.e., LDX #CAT, TXS instead of LDS #CAT) will

have an exactly-correct stack translation when assembled

for 6809.

5. Instruction timings in 6809 will, in general, be different

from other 6800-family processors.

6. The 6809 uses the two high-order condition code register

bits. Consequently, these will not, in general, appear

as l's as on the 6800/6801/6802.

7. The 6809 MUL instruction sets the Z-flag (if appropriate);

the 6801 MUL does not.

8. The 6809 TST instruction does not affect the Z-flag, while

6800/6801/6802 TST does clear the C-flag.

9. The 6809 right shifts (ASR, LSR, ROR) do not affect V;
I

the 6800/6801/6802 shifts set V = b 7 G> b 6 .

10. The 6801 double-length shift instructions (ASLD, LSRD)

are not exactly emulated by the 6800/6802/6809 sequences

ASLB, ROLA; and LSRA, ROLB. In particular, the Z-flag

represents only the last 8-bit result, and not the 16-

bit quantity.

I

3.7 MULTI-PROCESS SYNCHRONIZATION

INSTRUCTIONS

ASR

ASR

LOA #1
STA

ASR used as "Test and Clear"
ST used as "Unbusy"

BEFORE

fo o o o o o o 1r+-@]
"not busy"

f o o o tJ o o o o ~

"busy"

loo oo ooo oj ~
"busy"

AFTER

(o o o o o o o o ~
"busy" "control"

lo o o o o o o o ~
11 busy" "no control"

fooooooo1j 0
"not busy"

-
3.8 6809 ASSEMBLY-LANGUAGE SYNTAX

ABX ABX
ADC ADCA p; ADCB p

ADD ADDA p; ADDB P; ADDO p

AND ANDA p; ANDB p; AND CC #XX
ASL ASL Q
ASR ASR Q
BCC BCC dd; LBCC DODD
BCS BCS dd; LBCS DODD
BEQ BEQ dd; LBEQ DODD
BGE BGE dd; LBGE ODDO
BGT BGT dd; LBGT DODD
BHI BHI dd; LBHI DODD
BHS BHS dd; LBHS DODD
BIT BITA p; BITB p

BLE BLE dd; LBLE DODD
BLO BLO dd; LBLO DODD
BLS BLS dd; LBLS DODD
BLT BLT dd; LBLT DODD
BMI BMI dd; LBMI DODD
BNE BNE dd; LBNE DODD
BPL BPL dd; LBPL DODD
BRA BRA dd; LBRA DODD
BRN BRN dd; LBRN DODD
BSR BSR dd; LBSR DODD
BVC BV C dd; LBVC DODD
BVS BVS dd; LBVS DODD
CL R CLR Q
CMP CMPA p ; CMPB p; CMPD p

CMPX p ; CMPY p; CMPS p

CMPU p

COM COM Q
CWAI CWAI #XX

...

3.8 (Continued)

DA DAA
DEC DEC Q

EOR EORA P; EORB p

EXG EXG R,R
INC INC Q

JMP JMP xx xx
JSR JSR xx xx
LO LOA p; LOB p; LDD p

LOX p; LOY p ; LOS p

LOU p

LEA LEAX IN; LEAY I N ; LEAU IN
LEAS IN

LSL LSL Q

LSR LSR Q

MUL MUL
NEG NEG Q

NOP NOP
OR ORA p; ORB P; ORCC #XX
PUL PULS R{ , R} PULU R{ , R}
PSH PSHS R{ , R} PSHU R{ ,R}
ROL ROL Q

ROR ROR Q

RTI RTI
RTS RTS
SBC SBCA p; SBCB p

SEX SEX
ST STA P; STB p ; STD p

STX p ; STY p ; STS p

STU p

SUB SUBA p ; SUBB p; SUBD p

SWI SWI
SWI2 SWI2
SWI3 SWI3

3.8 (Continued)

SYNC

TFR
TST

-

SNYC

TFR R,R
TST Q

3,9 MC6800 - Equivalent Instructions

MC6800 mnemonics which are not included in the MC6809
assembly-language are handled by automatically trans­
lating the 6800 instruction into functionally-equivalent
6809 instructions, as described:

6800 Instruction

ABA
CBA
CLC
CLI
CLV
CPX
DES
DEX
INS
INX
LDAA
LDAB
ORAA
ORAB
PSHA
PSHB
PULA
PULB
SBA
SEC
SEI
SEV
STAA
STAB

6809 Equivalent

PSHS B; ADDA ,S+
PSHS B; CMPA ,S+
ANDCC #$FE
ANDCC #$EF
ANDCC #$FD
CMPX P
LEAS -1,S
LEAX -1,X
LEAS l,S
LEAX l,X
LOA
LOB
ORA
ORB
PSHS
PSHS
PULS
PULS
PSHS
ORCC
ORCC
ORCC
STA
STB

A

B

A

B

B; SUBA ,S+
#$01
#$10
#$02

...

3.9 (Continued)

6800 Instruction 6809 Eguivalent

TAB TFR A,B; TST A
TAP TFR A,CC
TBA TFR B,A; TST A
TPA TFR CC,A
TSX TFR s,x
TXS TFR x,s
WAI *CWAI #$FF

* The interrupt stnicture on the 6809 has been extensively
analyzed and improved compared to the 6800. While with the
6800 it was useful to execute the sequence: CLI, WAI; the
6809 logically-equivalent sequence (.ANIX:C #$EF, O~AI #$FF)
would allow on IRQ interrupt to occur after the .ANIX:C
instniction. If this is not desired, the 6809 instniction
~AI #$EF should be used to replace the logically-equivalent
sequence.

-

•

6809 op code map and cycle counts. The numbers by each op code indicate the number of machine cycles required to
1xtcute tach instruction. When the number contains an I (eg: 4 +I}, an additional number of machine C)iCles equal/Ilg I ma.1 be
,.quirtd The presence of two numbers, with the second one in parentheses, indicates that the ins true t1on 1m·o/,, s
o &ranch. The larger number applies if the branch is taken. The notation first page /second page lth1rd page has the fol In" 1n~·
mtaning fint page op codes have only one byte of op code (eg. load A immediate has an op code of hexadecimal 86) All pa:.;r
2 op codes are preceded by a page op code of hexadecimal 10 (eg the op code for CMPD immediate is hexadecimal 1053-
two bytts). Similarly third paqe op codes are preceded by a hexadecimal 11. A CMPU immed;ate 1s 1183. Some instructions arr
9ivtn two mnemonics as a programmer convenience (eg. ASL and LSL are equwalent). Notice that the lonq branch op codt'1

LBRA •nd LMSR were brought onto the first page for increased code efficiency.

Mcxt S1gruf1c:.aint Four B1u

DIR REL ACCA ACCB IND EXT IMM DIR IND EXT IMM DIR IND EXT

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

0 1 2 3 4 s 6 7 8 9 A B c D E F

' 3 BRA 4+1 2 2 6+1 7 2 4 4+1 5 2 4 4•1 5
ooao • NEG 'AGE2 LEAX NEG SUBA SUBS c

JBRN1 4•1 2 4 4•1 5 2 4 4• I 5
0001 1 -- PAGE3 SLBRN LEAY CMPA CMPB 1

I

2 3 BHI/ 4+1 2 4 4+1 5 2 4 4•1 5
2 \ Oll10 2 -- NOP 6(61LBHI LEAS SBCA SBCB

• 2 J BL.Si 4+1 2 2 6•1 7 4,6,6+ I ys.7 ,7+1,{'5,7,7+1,B 4 6 6•1 7 .

3 l 0011 3 COM SYNC 6161LBLS LEAU COM SUBD CMPD CMPU ADDO

6 3 BHS 6+1/by 2 2 8+1 7 2 4 4+1 5 2 4 4• I 5 I 0180 4 LSR -- 5(6)(BCCI PSHS LSR ANDA ANDB 4

3 BLO 5+1/by 2 4 4+1 6 2 4 4•1 5
0101 I -- -- Sl611BCSI PULS BITA BITB 0 I

z
' 6 3 BNE/ 6+ 1 /b'(2 2 6+1 7 2 4 4+1 s 2 4 4•1 5 ii 0110 • .-oR LIRA 616lLBNE PSHU ROR LOA LOB 6

i • B JBEO/ 6+1/by 2 2 6+1 7 4 4+1 5 4 4•1 5 ... --- --
J

,,,, 7 AS.- LHR Sl6lLBEO PULU ASR STA STB 7

t ASL 3 BVC/ 2 2 6+1 7 2 4 4+1 5 2 4 4+1 5 I , .. I (Lil.I -- Sl81LBVC --- ASL(LS LI EORA EORB R

! • 2 3 BVS/ 6 2 2 6+1 7 2 4 4+1 fi 2 4 4+1 5 I

I ,.,1 • .-oL OAA i(61LBVS RTS ROL AOCA ADCB 9

... • 3 3 IPL/ l 2 2 i+I 7 2 4 4+1 5 2 4 4•1 5 ! ,.18 .. OIC ORCC SlllL8PL ABX DEC ORA ORB "'' -- -- 3 IMI/ 6/15 2 4 4+1 5 2 4 4+1 5
B I ,.,, • 5(6)LBMI RTI ADDA ADDB

• 3 3BGE/ 20 2 2 6+1 7 4,6,6+1.ys.7.7+1,y5.7,7+1.B 3 5 5+1 6
I 111111 c IC AMOC:C 5161LBGE CWAI INC CMPX CMPY CMPS LOO c

• 2 3 BLT/ 11 2 2 6+1 7 7 7 1+1 8 6 6+1 6 ol 1101 D TIT SEX 5(6JLa1.T MUL TST BSR JSR -- STD

3 I 3 BGT/ 3+(4 iJ,5.6+1,6 I 4.6.6+1, 7 3.5.5+1,6 I 4,6,6• I 7
E \ 1111 I MP EXG 6~61LBGT --- JMP LOX LOY LOU LOS

• 7 JaLE/ 19(20(20 ~ 2 ... 1 - 6.5+1.6 I •11+•. 7 -- 5,5+1.16.6•1, 7
1111 F QJl T"" Mal~LE 8Nt/2f'J ~ STX $TV 5TU STS F

,80:1 .INDEXED A DD R E .SS I N C4

TYPE
NON - INDIRECT INDIRE.C.T

FORMS SovRCE Posr- e.vrE + .SOUl!CE PoST- e.YTE
+

l'V .¢ I"'.,)

C.ON STA.IV T OF=FSET No OFl='SE.T ,R I R~OOIOO 0 0 C,RJ IRRIOIOO ~

F=ROM R S-BIT O~l=.SET n,R ORR1v1h1111 I 0 d4a. µt+..s -f-o s-b

8- BIT OFFSET n, R I R~OIOOO I I [", R] IRRI I 000 4

16-BIT OFFSET h,R I ~RO IOOI 'i- z. (n~RJ \RRllOOI l

ACCUM ULAToR A- RE~ IS TE R OFF.Sc T A~R I RR.O 0 110 I 0 [A1RJ I RRI 0110 '+
OFFSET F=RoM R. B- RE:~IST&R Cl='FSET B,R IRROOIOI I 0 [B,Rl l~RIOIOI "+

D- R.E~ISTE R Of="F'..SEr D7R IRROIOll LI 0 (o,RJ IRRllOll 7

AUTO - INCREMENT/ INC.RE.ME.NT 6'(I 1 R+- I RR.Ooooo z. 0 f\ot "llowecl

- DEC.REM E1'J"i R INC.RE.ME.NT ey 2.. , R++ IRROOOOI 3 0 (1 RH]

DE. C. RE f\/\t.Nr 8'< I ,-R IRROOOIO z.. 0 l\Ot

DEC RE ME NT e" z. ,--R IR~OOOll 3 0 [~--R]

COt-JS T~NT OFF"SET 8- BIT OFFSET n, Pc.R. 1)1.XOllOO I I [t'> Pc~]
J=ROtv\ PC IC,- BIT or:s=..s ET n\ Pc.R IXXO llOI s 2. (r"1 1 PCR)

E~ TENDED use "'101"'1 -1\'\d exe.:J c ... :i

Figure 4: Indexed Addressing Modes. All instructions with indexed

addressing have a base size and number of cycles. The

~and H columns indicate the number of additional cycles

and bytes for the particular variation. The post byte

opcode is the byte that immediately follows the normal

opcode.

•~R.10001 " Q.llowc d

IRRIOOll 6

IXX. t 11 o o tf

I)(.><. I I Io I e
10011111 5

•

f" -
0

.;-

I

2.

0
0

0

0

0

I

2.

2..

•

3. 12 INDEXED-MODE POST-BYTE

POST BYTE REGISTER

BIT ASSIGNMENTS

POST-BYTE REGISTER BIT INDEXED
ADDRESSING

7 6 5 4 3 2 l 0 MODE

l x x x 0 0 0 l ,R++

l x x 0 0 0 0 0 'R+

l x x 0 0 0 l 0 ,-R
l x x x 0 0 l l , --R
l x x x 0 l 0 0 EA=(R ± 0 OFFSET)

l x x x 0 l 0 l EA= (R ± ACCB OFFSET

l x x x l 0 0 0 EA=(R±7BIT OFFsEn

l x x x l 0 0 l EA= (R± l 5 BIT OFFSET)
l x x x l l 0 0 EA= (PC ±7 BIT OFFSET
l x x x l l 0 l EA= (PC ±1 5 BIT OFFSEI,

0 x x x x x x x EA= (R±4 BIT OFFSET)

l x x x 0 l l 0 EA= (R±ACCA OFFSET)

l x x x l 0 l l EA=(R±D OFFSET)
l x x l l l l l EA= (ADDRESS)

ADDRESSING MODE FIELD

I FIELD
FOR P7 = l : INDIRECT
FOR P7 = 0: SIGN BIT

REGISTER FIELD
00: R = IX
0 l : R = IY
l 0: R = us
11: R = SP

3.13 LEGAL TRANSFER AND EXCHANGE PATHS

OPP

I
I
I

I

I
I

I
I

s

•

3.14 BRANCH GROUPS

Simple Conditional Branches

Condition

BEQ {Z=l}
BMI {N=l}
BCS {C=l}
BVS {V=l}

Signed Conditional Branches

Condition

BGT { (N <Il V) A Z=l}
BGE { (N <B V)=l}
BEQ {Z=l}
BLE {(N ~ V) v Z=l}
BLT {(N@V)=l}

Unsigned Conditional Branches*

Condition

BHI { (c A. Z) = 1 l
BHS { C= 1 l
BEQ { Z= 1 }
BLS { c " Z=l }
BLO { C= 1 }

Complement

BNE
BPL
BCC
BVC

Complement

BLE
BLT
BNE
BGT
BGE

Complement

BLS
BLO
BNE
BHI
BHS

*Not useful, in general, after INC/DEC, LO/ST, TST/CLR/COM.

ABX
ADCA,ADCB
ADDA,ADDB
ANDA,ANDB
AN DCC
ASLA,ASLB,ASL
ASRA,ASRB,ASR
BITA,BITB
CLRA,CLRB,CLR
CMPA,CMPB
COMA,COMB,COM
DAA
DECA,DECB,DEC
EORA,EORB
EXG Rl ,R2
INCA,INCB,INC
LDA,LDB
LSLA,LSLB,LSL
LSRA,LSRB,LSR
MUL
NEGA,NEGB,NEG
ORA,ORB
ORCC
PSHS {register}~
PSHU {register}~
PULS {register}8
PULU {register}B
ROLA,ROLB,ROL
RORA,RORB,ROR
SBCA,SBCB
STA,STB
SUBA,SUBB
TSTA,TSTB,TST
TFR Rl,R2

Add B-register to X-register unsigned
Add memory to accumulator with carry
Add memory to accumulator
And memory with accumulator
And immediate with condition code register
Arithmetic shift left accumulator or memory
Arithmetic shift right accumulator or memory
Bit test memory with accumulator
Clear accumulator or memory
Compare memory with accumulator
Complement accumulator or memory
Decimal Adjust A-accumulator
Decrement accumulator or memory
Ex c l u s i v e or memory w i th a cc um u l a tor
Exchange Rl with R2
Increment accumulator or memory
Load accumulator from memory
Logical shift left accumulator or memory
Logical shift right accumulator or memory
Unsigned multiply (8 bit x 8 bit = 16 bit)
Negate accumulator or memory
Or memory with accumulator
0 r i mm e d i 1 ate w i th con di ti on code reg i s t er
Push register(s) on hardware stack
Push register(s) on user stack
Pull register(s) from hardware stack
Pull reqister(s) from user stack
Rotate accumulator or memory left
Rotate accumulator or memory right
Subtract memory from accumulator with borrow
Store accumulator to memory
Subtract memory from accumulator
Test accumulator or memory
Transfer register Rl to register R2

FIGURE l 8-BIT OPERATIONS

-

I

ADDO
SUBD
LOO
STD
CMPD
LDX,LDY,LDS,LDU
STX,STY,STS,STU
CMPX,CMPY,CMPU,CMPS
LEAX,LEAY,LEAS,LEAU
SEX
TFR register,register
EXG register,register
PSHS (register)B
PSHU (register)B
PULS (register)S
PULU (register)B

Add to D accumulator
Subtract from D accumulator
Load D accumulator
Store D accumulator
Compare D accumulator
Load pointer register
Store pointer register
Compare pointer register
Load effective address into pointer register
Sign Extend
Transfer register to register
Exchange register to register
Push register(s) onto hardware stack
Push register(s) onto user stack
Pull register(s) from hardware stack
Pull register(s) from user stack

FIGURE 2 16-BIT OPERATIONS

-
0,R indexed with zero offset
[0, R] indexed with zero offset indirect
,R+ auto increment by 1
,R++ auto increment by 2

[,R++] auto increment by 2 indirect
,-R auto decrement by 1

,--R auto decrement by 2

[,--R] auto decrement by 2 indirect
n,P indexed with signed n as offset (n=5,8, or 16-bits)
[n,P] indexed with signed n as offset indirect
A,R indexed with accumulator A as offset
[A,R] indexed with accumulator A as offset indirect
B,R indexed with accumulator B as offset
[B,R] indexed with accumulator B as offset indirect
D,R indexed with accumulator D as offset
[D,R] indexed with accumulator D as offset indirect

R = X, Y, U or S

P = PC, X, Y, U or S

FIGURE 3 INDEXED ADDRESSING MODES

•

BCC,LBCC
BCS,LBCS
BEQ,LBEQ
BGE,LBGE
BGT,LBGT
BHI,LBHI

Branch if carry clear
Branch if carry set
Branch if equal
Branch if greater than or equal (signed)
Branch if greater (signed)
Branch if higher (unsigned)

BHS,LBHS Branch if higher or same (unsigned)
BLE,LBLE Branch if less than or equal (signed)
BLO,LBLO Branch if lower (unsigned)
BLS,LBLS Branch if lower or same (unsigned)
BLT,LBLT Branch if less than (signed)
BMI,LBMI Branch if minus
BNE,LBNE Branch is not equal
BPL,LBPL Branch if plus
BRA,LBRA Branch always
BRN,LBRN Branch never
BSR,LBSR Branch to subroutine
BVC,LBVC Branch if overflow clear
BVS,LBVS Branch if overflow set

FIGURE 4 RELATIVE SHORT AND LONG BRANCHES

CWAI

NOP
JMP
JSR
RT I
RTS
SEX
SWI,SWI2,SWI3
SYNC

Clear condition code reqister bits and wait
for interrupt
No-operation
Jump
Jump to subroutine
Return from interrupt
Return from subroutine
Sign extend B-register into A-register
Software interrupts
Synchronize with interrupt line

FIGURE 5 MISCELLANEOUS INSTRUCTIONS

•

4.0 SYSTEMS INTERFACING

4.1 INTERRUPTS

Three different classes of prioritized vectored interrupts
are included in the 6809 MPU. In decreasing priority
these are: NMI {Non-Maskable Interrupt}, FIRQ (Fast
Interrupt Request}, and IRQ (Interrupt Request} and
are more fully defined in the ''Hardware Instructions"
section.

Using the processor signal line Interrupt Acknowledge
(IACK} and decoding four bits of the Address Bus, the
interrupt response may be vectored .£y the interrupting
device to anywhere in the address-space. This techni­
que can be used to greatly expand the number of prior­
itized hardware-vectored interrupts.

The NMI is especially applicable to gaining immediate
(non-inhibitable) MPU response for power-fail, software
dynamic memory refresh, or other non-delayable events.
FIRQ is a maskable fast interrupt which saves only a
return address and condition codes, making it much
faster than NMI or IRQ. IRQ is a maskable interrupt
which saves a complete MPU state.

Two types of external-process synchronization are also
provided by the interrupt system. The CWAI command
saves the entire MPU state, then waits until a non­
inhibited interrupt occurs before vectoring to the
interrupt routine. A SYNC instruction stops the MPU
from executing code until an interrupt is received.
If the interrupt is masked, the MPU simply resumes
execution. If the interrupt is enabled, the interrupt

response is performed.

AUSTIN,TEXAS--MICROCOMPUTER CAPITAL OF THE ~ORLD!
M6800-M680S CROSS-ASSEMBLER 2.2
PAGE 002 MORBENCH

00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019

00021
00022 1004
00023 1005

00025

00027 1007
00028 100A
00029 1000
00030 100F
00031 1012
00032 1014
00033 1016

B6
BE
A7
BF
81
27
3B

00035 1017 20

000D
00
0100

1004
1005
80
1005
0D
01

FE

5
6
6
6
2
3

15

•••••••••• I/O HANDLER ••••••••••
•
I: A SlNGLE INPUT INTERRUPT IS ARMED. RECEIVE
llE AN INTERRUPT, SAVE REGISTERS, INPUT A CHAR,
I: CLEAR THE INTERRUPT, PUT THE CHAR IN A
llE SOFTWARE BUFFER, INCREMENT THE BUFFER PTR,
• TEST FOR END OF LINE, RECOVER REGISTERS,
I: AND RETURN.
llE
llE SETUP: NONE
llE TOTAL: 7 LN, 16 BY, 62 CY
llE

•••••••••••••••••••••••••••••••
EOL EQU
MODEM FCB
BUFPTR FOB

!IE ASSUME lRQ

•00
0
1100

FROM PIA

ASCII CR

C 19 CY)

BEGIN LOA MODEM CLEARS PIA IRQ
LOX BUFPTR GET PTR
STA ,x+ STORE CHAR
STX BUFPTR UPDATE PTR
CMPA •EOL END OF LlNE?
BEQ EOLGP IF YES, MORE TO DO
RTl ELSE, RETURN

3 EOLGP BRA

-

•

AUSTIN,TEXAS--MICROCOMPUTER CAPITAL OF THE WORLD!
M6800-M6809 CROSS-ASSEMBLER 2.2
PAGE 003 MORBENCH

00038
00039
00040
00041
00042
00043
00044
00045
00046
00047
00048
00049

00051 1019
00052 1.01.B
00053 1. 01 E

00055 1020
00056 1022
00057 1.024
00058 1025
00059 1.027
00060 102A

00062 102C

00064
00065 102E
00066 1.042

86
BE
cs

A1
27
SA
26
BE
30

20

4A
1.02E
28

80
06

F9
0001
1.F

FE

004A
00
00

2
3
2

6
3
2
3
3
5

3

llEllEllEllEllEllEllEllE!IEllE CHARACTER SEARCH llEllEllEllEllE¥¥¥llEllE

llE
I: SEARCH A TABLE OF N CHARACTERS FOR A SPECIFIC
Ill: CHARACTER. IF FOUND, RETURN THE ADDRESS OF
llE THE MATCH, ELSE RETURN ZERO. LET N BE 40.
llE LET THE SEARCH FAIL.
llE
llE SETUP: 3 LN, 7 B'r', 7 CY
llE OPERATION: 6 LN, 12 BY, (14llE40 H8=568 CY
llE TOTAL: 9 LN, 19 BY, 575 CY

*
llEl1El1EllEllEllEl1EllEl1El1EllEllEl1EllEllEl1EllEllEllEllEllEllEl1El1EllEllEllEllEllEllEllEllEl1El1EllEllEllEllE

CSR CH

est

CS2

CHAR
BUF

LOA
LOX
LDB

CMPA
BEQ
DECB
BNE
LDX
LEAX

BRA

EQU
FCB
FCB

t:CHAR CHAR TO FIND
•BUF PTR INTO TABLE
•40 LENGTH OF TABLE

,x+ SAME CHAR?
CS2 IF YES, POINT AT

ANOTHER ONE DOhlN
est ALL DONE?
•1 TRICKY CLRX
-1,x WENT PAST!

'J
0 J J JI I JI JI I I JI I I I I I 10
0,,,,,,,,,,,,,,,,,, ,0

IT

...

•
AUSTIN,TEXAS--MICROCOMPUTER CAPlTAL OF THE WORLD!
M6800-M6809 CROSS-ASSEMBLER 2.2
PAGE 004 MORBENCH

00069
00070
00071
00072
00073
00074
00075
00076
00077
00078
00079
00080
00081

00083 1056
00084 1058

00086 1058
00087 105C
00088 105E
00089 105F
00090 1061

00092
00093 1063
00094 1071
00095 1073
00096 1075

86
BE

5F
CB
44
24
SE

20
20

80
1061

02

FB
95

0080
1073
1075
FE
FE

llEllE!IE!IEllEllEllE!IE•llE COMPUTED GO TO llEllEllE•llEllE•llE••

llE

llE LSB FIRST, TEST A CONTROL BYTE WHICH HAS
llE HAS EXACTLY ONE BIT TRUE. THE POSITION
llE OF THE TRUE BlT DETERMlNES WHlCH OF EIGHT
llE TABLE VECTORS IS USED FOR CONTROL-TRANSFER
llE LET B7 BE TRUE.
llE

!IE SETUP: 2 LN, 5 BY, 5 CY
!IE OPERATION: 5 LN, 8 BY, 2+c 7llE8 >+7=65 CY
!IE TOTAL: 7 LN, 13 BY, 70 CY
llE
!IEllE!IEllE!IE!IE!IE!IE!IE!IE!IEllE!IE!IE!IE!IE!IE!IEllE!IE!IE!IEllE!IE!IE!IE!IE!IE!IEllE!IE!IE!IE!IE!IE!IE

2 COMPGO LDA •CONT BY
3 LDX •TABLE-2 START OF TABLE

2 CLRB
2 C01 ADDB •2 TWO BYTES / VECTOR
2 LSRA
3 BCC cot
7 ,JMP CB, X J REGISTER-OFFSET INDIRECT

CONTBY EQU
TABLE FDB

FDB
3 ERR BRA
3 NOERR BRA

180
ERR,ERR,ERR,ERR,ERR,ERR,ERR
NOERR

* !f.

•
AUSTIN,TEXAS--MICROCOMPUTER CAPITAL OF THE WORLD!
M6800-M6809 CROSS-ASSEMBLER 2.2
PAGE 005 MORBENCH

00099
00100
00101
00102
00103
00104
00105
00106
00107
00108
00109
00110

00112 1077 SE 108E 3
00113 107A 108E 1086 4
00114 107E CE 10DE 3

00116 1081 EC 81 8
00117 1083 E3 At 9
00118 1085 ED Ct B
00119 1087 BC 1086 4
00120 108A 2:6 F5 3

00122 108C 20 FE 3

00124 108E 0000
00125 1098 0005
0012G 10A2 0010
00127 10AC 0015
00128 10B6 0099
00129 10C0 0094
00130 10CA 0089
00131 10D4 0084
00132 10DE 0000

********** VECTOR ADDITION I 16-BIT *****•••••
llE

* PERFORM AN ELEMENT-BY-ELEMENT ADDITION ON
!IE TWO VECTORS OF N 16-BIT ELEMENTS EACH.
11E PLACE THE RESULT IN A DIFFERENT VECTOR.
!IE LET N BE 20.

*
* !IE
!IE

SETUP:
OPERATION:
TOTAL:

3 LN, 10 BY, 10 CY
5 LN, 11 BY, 3211E20=640 CY
B LN, 21 BY, 650 CY

* !IE!IEllEllE!IEllE!IEllE!IE!IEllEllEllE!IE!IEllEllEllE!IE!IEllEllE!IEllEllEllEllEllEllEllEllE!IE!IEllEllEllEllEllEllEllEllEllE!IEllEllEllE

ANBNCN LDX •TABLEA
LDY t:TABLEB
LDU t:TABLEC

AN1 LDD ,x++
ADDO , 'r' ++
STD ,u++
CMPX +211E20+TABLEA
BNE AN1

BRA *

TABLEA FDB S00,S01,S02r103,S04
FOB S05,S06,f07,f08,f09
FDB f10,S11,f.t2,f13,St4
FDB f.15,f.1G,St7,118,S19

TABLEB FOB f99,f98,f.97,S96,S95
FDB S94,S93,f92,S91,f90
FDB f89,$88,$87,f86,f85
FDB S84,f~3,S82,f81,f80

TABLEC FDB 0,,,,,,,,,,,,,,,,,, ,0

•
AUSTIN,TEXAS--MICROCOMPUTER CAPITAL OF THE WORLD!
M6800-M6809 CROSS-ASSEMBLER 2.2
PAGE 006 MORBENCH

00135 ••llEllEllEllEllEllEllEllE VECTOR ADDITION / 8-BIT ••••••••••
00136 llE

00137 llE PERFORM AN ELEMENT-BY-ELEMENT ADDDITION
00138 !IE ON TWO VECTORS OF N 8-BIT ELEMENTS EACH.
00139 llE PLACE THE RESULT IN A DIFFERENT VECTOR.
00140 llE LET N BE 20.
00141 llE

00142 llE SETUP: 3 LN, 10 BY, 10 CY
00143 llE OPERATION: 6 LN, 13 BY, 1011E35=350 CY
00144 !IE TOTAL: 9 LN, 23 BY, 360 CY
00145 llE

00146 llEllEllEllEllEllEllEllE!IE!IE!IEllEllE!IEllEllEllEllEllEllEllE!IEllEllEllE!IE!IEllE!IEllEllEllEllEllEllEllEllEllEllEllEllEllEllEllEllE

00148 1106 8E 111F 3 ABCNNN LDX •TABLA
00149 1109 108E 1133 4 LDY •TABLB
00150 1100 CE 1147 3 LOU •TABLC

00152 1110 EC 81 8 ABC1 LDD .x++
00153 1112 AB A0 6 ADDA rY+
00154 1114 EE A0 6 ADDB ,Y+
00155 1116 ED Ct 8 STD ,u++
00156 1118 8C 1133 4 CMPX #TABLA+20
00157 1118 26 F3 3 BNE ABC1

00159 111D 20 FE 3 BRA

00161 tt 1F 00 TABLA FCB f00,S01,102,S03,S04
00162 1124 05 FCB 105,S06,f07,f08,f0S
00183 1129 10 FCB f10,f11,f12,f13,f14
00•164 t12E 15 FCB 115,S16,ft7,S18,f19
00165 1133 89 TABLB FCB f.88,f98,f97,f86,S85
00166 1138 94 FCB 194,f93,f92,f91,S90
00167 1130 89 FCB S89,f88,f87,f86,f85
00168 1142 84 FCB 184,S83,f82,f81,f80
00169 1147 00 TAB LC FCB 0 Ir I I Ir' pr r Ir Ir I I I I ,0

•

AUSTIN,TEXAS--MICROCOMPUTER CAPlTAL OF THE WORLD!
M6800-M6809 CROSS-ASSEMBLER 2.2
PAGE 007 MORBENCH

00172
00173
00174
00175
00176
00177
00178
00179
00180
00181
00182
00183

00185 11.58 C6 05

00187 1150 34 04
00188 115F FC 116F
00189 1162 44
00190 1163 56
00191 1164 6A E4
00192 1166 26 FA
00193 1168 FD 1t6F
00194 1168 32 61

001.96 1160 20 FE

00198 116F F1CD

•••••••••• 16-BIT SHIFTS •llEllEllE******
llE

llE LOGICALLY SHIFT A 16-BIT QUANTITY FROM
llE MEMORY RIGHT N PLACES. (ZERO FlLLS ON
llE LEFT). PLACE THE RESULT IN MEMORY.
llE LET N BE 5.
llE

SETUP:
OPERATION:
TOTAL:

1 LN, 2 BY, 2 CY
8 LN, 1. 6 BY, C 131E5)+ • ;: Eso CY
9 LN, 18 BY, 90 CY

2 BEG LDB #5

6 PSHS B
6 LDD DWORD
2 BE1 LSRA
2 RORB
6 DEC 0,S
3 BNE BE1
6 STD DWORD
5 LEAS 1,s CLEAN UP STACK

3 BRA •

DWORD FOB IF1.CD

AUST[N,TEXAS--MlCROCOMPUTER CAPITAL OF THE WORLD!
M6800-M6809 CROSS-ASSEMBLER 2.2
PAGE 008 MORBENCH

00201
00202
00203
00204
00205
00206
00207
00208
00209
00210

00212 1. 1. 71. FC 1.183
00213 1174 44
00214 1175 56
00215 1176 44
00216 1177 56
00217 1178 44
00218 1179 56
00219 117A 44
00220 1178 56
00221 117C 44
00222 117D SS
00223 117E FD 1183

00225 1181 20 FE

00227 1183 F1CD

s
2
2
2
2
2
2
2
2
2
2
6

3

•••••••••• DOUBLE SHIFT RIGHT FIVE PLACES ••••••••
•
• LOGICALLY SHIFT RIGHT A 16-BIT QUANTITY
• FROM MEMORY EXACTLY 5 PLACES.
!IE REPLACE THE RESULT IN MEMORY.
!IE
!IE SETUP: NONE
!IE TOTAL: 12 LN, 1. 6 BY, 30 CY

• ••

WORD

LDD 1-JORD
LSRA
RORB
LSRA
RORB
LSRA
RORB
LSRA
RORB
LSRA
RORB
STD WORD

BRA

FDB IF1CD

GET DOUBLE BYTE
: 16-BIT SHIFT

AGAIN

AGAIN

AGAIN

AGAlN

STORE DOUBLE BYTE

•
AUSTIN,TEXAS--MICROCOMPUTER CAPITAL OF THE WORLD!
M6800-M6809 CROSS-ASSEMBLER 2.2
PAGE 009 MORBENCH

00230 t:lil:t:l:lUEllUE 16 X 16 MULTIPLY l:t:t:t:••••••
00231 llE

00232 • MULTIPLY TWO 16-BIT POSITIVE VALUES
00233 !IE TO GENERATE A 32-BIT PRODUCT.
00234 !IE AT TERMINATION, BOTH INPUT VALUES
00235 llE AND THE RESULT W£LL EE IN MEMORY.
00236 llE

00237 !IE CA:B) X (C: D) = BDH:BDL
00238 !IE + BCH:BCL
00239 !IE + ADH:ADL
00240 !IE + ACH:ACL
00241 !IE ----------------
00242 !IE
00243 !IE SETUP: 3 LN, 10 BY, 10 CY
00244 ltE OPERATION: 25 LN, 46 BY, 154 CY
00245 !IE TOTAL: 28 LN, 56 BY, 1S4 CY
00246 !IE
00247 !IE!IE!IEt:llEt:!IE!IEllEllEllE•llE•llE••••••••••••*··········

00249 1185 BE 11BF 3 ABC LDX •AA POINTER TO A CHS BYTE>
00250 1188 108E 11C1 4 LOY •BB
00251 118C CE 11C3 3 LDU •C

00253 118F 6F C4 6 CLR 0,U
00254 11S1 SF 41 7 CLR 1 • u
00255 1193 A6 01 5 LOA 1,x •A LS BYTE
00256 1195 ES 21 5 LOB 1 , y •B LS BYTE
00257 1197 3D 11 MUL
00258 1198 ED 42 6 STD 2,U
00259 119A AS 84 4 LOA 0,X =tA MS BYTE
00260 119C E6 21 5 LOB 1 , y •B LS BYTE
00261 119E 30 11 MUL
00262 119F E3 41 7 ADDO t,U
00263 11 At ED 41 6 STD 1,U
00264 11A3 24 02 3 BCC ABt
00265 11A5 6C C4 6 INC 0,U
00266 11A7 A6 01 5 AB1 LDA 1,x +A LS BYTE
00267 11A9 E6 A4 4 LOB 0, y t:B MS BYTE
00268 11AB 30 11 MUL
00269 1.1AC E3 41 7 ADDO 1,U
00270 11AE ED 41 6 STD 1,U
00271 1180 24 02 3 BCC AB2
00272 1182 SC C4 6 INC 0,U
00273 1184 A6 84 4 AB2 LOA 0,X •A MS BYTE
00274 1186 E6 A4 4 LDB 0,Y •B MS BYTE
00275 1188 3D 11 MUL
00276 11B9 E3 C4 6 ADDO 0, ll
00277 11BB ED C4 5 STD 0,U

00279 1tBD 20 FE 3 BRA it:

00281 11BF 03E8 AA FOB 1000
00282 11C1 01F4 BB FOB 500
00283 11C3 0000 c FDB 0,0

-
•T
END ADDR 1180
>1185;G
LOX •ttBF P-1188 X-11BF Y-11C1 A-00 B-07 C-00 D-00 U-11C3 s-2000
LOY •11C1 P-118C X-11BF Y-11C1 A-00 B-07 C-00 D-00 U-11C3 S-2000
LOU •11C3 P-1.18F X-11 BF Y-11C1 A-00 B-07 C-00 D-00 U-11C3 S-2000
CLR 11C3 P-11S1 X-11BF Y-11C1 A-00 B-07 C-D4 D-00 U-11C3 S-2000
CLR 11C4 P-1193 X-11BF Y-11C1 A-00 B-07 C-04 0-00 U-11C3 S-2000
LOA 11C0 P-1195 X-11BF Y-11Ct A-E8 B-07 C-08 0-00 U-11C3 S-2000
LOB 11C2 P-1197 X-11BF Y-11C1 A-EB B-F4 C-DB D-00 U-11C3 s-2000
MUL P-1198 X-11BF Y-11C1 A-DD B-20 C-DB D-00 U-11C3 S-2000
STD 11 C5 P-11SA X-ttBF Y-11C1 A-DD B-20 C-08 D-00 U-11C3 S-2000
LOA 11 BF P-119C X-11BF Y-11C1 A-03 B-20 C-D0 D-00 U-11C3 s-2000
LOB 11 C2 P-119E X-ttBF Y-11C1 A-03 B-F4 C-08 0-00 U-11C3 S-2000
MUL P-119F X-11BF Y-11C1 A-02 B-DC C-D9 D-00 U-11C3 S-2000
ADDO 11C4 P-11A1 X-11BF Y-11C1 A-03 B-89 C-00 D-00 U-11C3 S-2000
STD 11C4 P-11A3 X-11BF Y-11C1 A-03 B-89 C-00 0-00 U-11C3 S-2000
BCC 11A7 P-11A7 X-11BF Y-11Ct A-03 B-89 C-00 0-00 U-11C3 5-2000
LDA 11C0 P-11AS X-ttBF Y-1.1C1 A-EB B-B9 C-DB D-00 U-11C3 S-2000
LOB 11 Ct P-11AB X-11BF Y-11C1 A-EB B-01 C-D0 D-00 U-11C3 S-2000
MUL P-11AC X-11BF Y-11C1 A-00 B-EB C-Dt D-00 U-11C3 s-2000
ADDO 11C4 P-11AE X-118F Y-11C1 A-04 8-At C-00 D-00 U-11C3 S-2000
STD t1C4 P-1180 X-118F Y-11C1 A-04 B-A1 C-D0 D-00 1,.1-11 C3 s-2000
BCC 11 B4 P-1184 X-11BF Y-11Ci A-04 B-Ai C-00 D-00 U-11C3 S-2000
LOA ttBF P-1186 X-ttBF Y-ttCt A-03 B-A1 C-00 D-00 U-11C3 S-2000
LOB 11 Ct P-1188 X-11BF Y-11Ct A-03 B-01 C-00 D-00 U-11C3 5-2000
MUL P-1189 X-ttBF Y-11C1 A-00 B-03 C-00 D-00 U-11C3 S-2000
ADDO 11 C3 P-1188 X-11BF Y-11C1 A-00 B-07 C-00 D-00 U-11C3 S-2000
STD 11C3 P-11BD X-11BF Y-11C1 A-00 B-07 C-D0 D-00 U-11C3 S-2000

•

AUSTlN,TEXAS--MlCROCOMPUTER CAPITAL OF THE WORLD!
MG800-M6809 CROSS-ASSEMBLER 2.2
PAGE 010 MORBENCH

00286
00287
00288
00289
00290
00291
00292
00293
00294
00295

00297 11C7 cc
00298 11CA 108E
00299 11CE CE

00301 11 D1 4C
00302 1102 AE
00303 1104 AF
00304 1106 SA
00305 1.1.D7 26
00306 1.109 4A
00307 1.1 DA 26

00309 11.DC 20

00311
00312
0031.3

0020
0100
0200

Ai
Ct

F9

FS

FE

0100
0200
0040

3
4
3

2
8
8
2
3
2
3

3

llEllElUEllEllEllEllOIEllE MOVE BLOCK IE!IEUElfllEllEIE!l:llE
!IE

llE COPY N BYTES TO ANOTHER LOCATION
!IE LET N BE 64.
llE
llE SETUP: 3 LN, 10 BY, 10 CY
llE OPERATION: 7LN, 11 BY, 2+(21 t:32 >+5=679
llE TOTAL: 10 LN, 21 BY, 689 CY
llE

llE!IEllEllEllEllEllE!IEllEllEllEllEt:llEllEllEllEllEllEllEllE!IEllEllEllEllEllEllEIEllEllEllE

B1

FROM
TO

LDD
LDY
LDU

INCA
LOX
STX
DECB
BNE
DECA
BNE

BRA

EQU
EQU

LENGTH EOU

•LENGTH/2
•FROM
t:TO

rY++
,u++

B1.

B1.

llE

f100
$200
64

MS COUNT CORRECTION
GET TWO BYTES
PUT TWO BYTES
LS COUNT

MS COUNT

CY

6.2 PROGRAM SEGMENTS

These small segments of code are less well-suited
for benchmarks as they are more complex, harder
to fairly define, and perhaps more dependent on
the structure of an individual machine. They do
represent a demonstration of useful, powerful 6809
subroutine techniques.

AUSTIN,TEXAS--MICROCOMPUTER CAPITAL OF THE WORLD!
M6800-M6809 CROSS-ASSEMBLER 2.2
PAGE 002 BENCHIES

00008 000D CR EQU S0D ASCII CR

00010 • 00011 !IE COPYLN COPIES A TEXT LINE TO A NEW LOCATION
00012 llE

00013 llE A TEXT LINE IS A SEQUENCE OF CHARS
00014 !IE ENDING WITH A CARRIAGE-RETURN
00015 !IE

00016 1404 30 80 0011 9 LEAX FROM,PCR
00017 1408 31 80 0022 9 LEAY TO,PCR
00018 140C 80 02 7 BSR COPYLN
00019 140E 20 FE 3 BRA !IE
00020 !IE

00021 llE
00022 1410 AS 80 6 COPYLN LOA .x+ GET A BYTE
00023 1412 A? A0 6 STA ,'(+ STORE IT
00024 1414 81 0D 2 CMPA •CR END OF LINE?
00025 1416 26 F8 3 BNE COPYLN NOPE, GO AGAIN
00026 1418 39 5 RTS
00027 1419 54 FROM FCC /THIS IS A TEXT LINE./
00028 1420 0D FCB CR
00029 142E 00 TO FCB 0,,,,,,,,,,,,,,,,, •• ,0

-

AUSTIN,TEXAS--MICROCOMPUTER CAPITAL OF THE WORLD!
M6800-M6809 CROSS-ASSEMBLER 2.2
PAGE 003 BENCH I ES

00032 IE

00033 !IE SEARCH LOOKS FOR A PARTICULAR TEXT STRING
00034 !IE IN A BLOCK OF DATA.
00035 llE RETURNS Z=1 IFF FOUND.
00036 llE X POINTS AT NEXT CHAR PAST STRING.
00037 llE

00038 1443 30 BD 0038 9 START LEAX BLOCK,PCR DATA BLOCK START ADDR
00039 1447 33 8D 0061 9 LEAU END,PCR DATA BLOCK END ADDR
00040 144B 31 80 005E 9 LEAY STRlNG,PCR ADDR OF STRING TO BE FOUNI
00041 144F cs 05 2 LDB :tLENGTH
00042 1451 BD 02 7 BSR SEARCH
00043 1453 20 FE 3 BRA !IE

00045 1455 34 74 11 SEARCH PSHS U,Y,X,B
00046 !IE
00047 llE C SP+0) = LENGTH
00048 11E (SP+1) = RESTART BLOCK SEARCH (H)
00049 llE RESTART BLOCK SEARCH C L)
00050 !IE C SP+3) = STRING CH>
00051 llE STRING (L)
00052 llE C SP+5 > = END (H >
00053 !IE END CL>
00054 1457 AE 61 6 AGAIN LOX 1, s
00055 1459 10AE 63 7 LDY 3,S RESET STRING PTR
00056 145C ES E4 4 LOB 0,s RESET STRING LENGTH
00057 Ii THIS LOOP SEARCHES AFTER MISMATCH
00058 145E AC 65 7 LOOP1 CMPX s,s END OF DATA?
00059 1460 2E 1A 3 BGT EXIT IF YES, EXIT NOT FOUND
00060 1462 AS 80 6 LOA ,x+ GET BYTE AND INC
00061 1464 AF 61 6 STX 1,s STORE RESTART LOCATION
00062 1466 At A4 4 CMPA 0,Y SAME AS STRING?
00063 1468 26 F4 3 BNE LOOP1 BRANCH IF NOT
00064 146A 31 21 5 LEAY 1 , y POINT TO 2ND CHAR
00085 14SC SA 2 DECB
00066 1460 27 00 3 BEQ EXlT FOR 1-BYTE SEARCH
00067 11£ THIS LOOP SEARCHES AFTER MATCH
00068 146F AC 65 7 LOOP2 CMF'X s,s END OF DATA?
00069 1471 2E 09 3 BGT EXIT IF YES, EXIT NOT FOUND
00070 1473 A6 80 6 LOA ,x+ GET BYTE AND INC
00071 1475 A1 A0 6 CMPA ,Y+ SAME AS STRING?
00072 1477 26 DE 3 BNE AGAIN IF NO, START OVER
00073 1479 SA 2 DECB DONE?
00074 147A 26 F3 3 BNE LOOP2 IF NO, KEEP GOING
00075 147C 32 67 5 EXIT LEAS 7,S CLEAN UF STACK
00076 147E 39 5 RTS

00078 147F 54 BLOCK FCC /THIS IS A BLOCK OF DATIVE /
00079 1499 44 FCC /DATA TO BE SEARCHED./
00080 14AC END EQU lk-1
00081 14AD 44 STRING FCC /DATA I
00082 0005 LENGTH EQU !IE-STRING

-
AUSTIN,TEXAS--MICROCOMPUTER CAPITAL OF THE WORLD!
M6800-M6809 CROSS-ASSEMBLER 2.2
PAGE 004 BENCHlES

00085 llE

00086 !tE ADDSEQ ADDS A SEQUENCE OF DECIMAL DIGITS
00087 !tE C FI R:STG + SECSTG = TH I RST >
00088 * 00089 !IE ALL PTR:S ARE PAST LS BYTE OF STRING
00090 llE

00091 1482 30 BD 0025 9 LEAX FlRSTG+LEN,PCR: PTR TO tST STRING
00092 t4B6 31 BD 0028 9 LEA'!" SECSTG+LEN,PCR: PTR TO 2ND STRING
00093 14BA 33 BD 0031 9 LEAU THIRST+LEN,PCR PTR TO 3RD STRING
00094 14BE CG 0A 2 LDB •LEN BYTES IN STRING
00095 14C0 BD 02 7 BSR ADDSEQ
00096 14C2 20 FE 3 BRA * 00097 " 00098 ll€

00099 t4C4 1c FE 3 ADDSEQ CLC CLEAR CARRY
00100 t4C6 AS 82 6 DOG LDA ,-x GET 2 DIGITS
00101 14C8 A9 A2 6 ADCA ,-Y ADD W.IOTHERS
00102 14CA 19 2 DAA MA~~E DEC I MAL
00103 t4CB A7 C2 6 STA ,-u STORE 2 DIGITS
00104 14CD SA 2 DECB DONE? CCARRY UNAFFECTED>
00105 t4CE 26 F6 3 BNE DOG BRANCH IF NO
00106 14D0 39 5 RTS

00108 1401 01 FIRSTG FCB S01,S23,S45,S99,S99
00109 1406 00 FCB S00,S00,S99,S99,S99
00110 14DB BB SECSTG FCB t88,S76,f54,S00,S01
00111 14E0 01 FCB $01,S23,S45,f67,f89
00112 14E5 00 THIRST FCB 0,,,,,,,,,0
00113 000A LEN EQU 10 DECIMAL DIGITS = 20

-
AUSTIN,TEXAS--MICROCOMPUTER CAPITAL OF THE WORLD!
MS800-MS809 CROSS-ASSEMBLER 2.2
PAGE 005 BENCH I ES

00116 !IE

00117 !IE SUBSEQ SUBTRACTS A SEQUENCE OF DECIMAL DIGITS CI'
00118 * FROM ANOTHER SEQUENCE OF DECIMAL DIGITS C IX>
00119 !IE AND STORES THE RESULT CUS>, ALL STRINGS
00120 * BEING COUNT BYTES LONG.
00121 lit

00122 14EF 30 BD 002E 9 LEAX MINUEN+COUNT,PCR
00123 14F3 31 BD 0034 9 LEAY SUBTRA+COUNT,PCR
00124 14F7 33 8D 003A 9 LEAU RESULT+COUNT,PCR
00125 14FB cs 0A 2 LOB •COUNT
00126 14FD 80 02 7 BSR SUBSEQ
00127 14FF 20 FE 3 BRA llE

00128 llE
00129 !IE

00130 1501 tA 01 3 SUBSEQ SEC SET CARRY
00131 1503 34 01 5 PSHS cc CARRY TEMP
00132 1505 86 99 2 LOOPS LOA t:S99 THE TEN'S COMPLEMENT
00133 1507 A0 A2 6 SUBA ,-Y NO CARRY POSSIBLE
00134 1509 35 01 5 PULS cc THE SAVED CARRY
00135 150B A9 82 6 ADCA ,-x DO A BI NAR'r" ADD
00136 150D 19 2 DAA BACK TO BCD
00137 150E 34 01 5 PSHS cc SAVE THE CARRY!
00138 1510 A7 C2 6 STA ,-U STORE THE RESULT
00139 1512 SA 2 DECB DONE?
00140 1513 26 F0 3 BNE LOOPS IF NOT, GO AGAIN
00141 1515 35 81 7 PULS CC,PC CLEAN UP STACK, RTS

00143 1517 99 MINUEN FCB S99,S99,S99,S99,S99
00144 15"1 (: 99 FCB S99,S09,S00,S00,100
00145 1521 0t SUBTRA FCB S01,S23,S45,S67,S00
00146 1526 99 FCB 199,100,S54,S32,f11
00147 152B 00 RESULT FCB 0,,,,,,,,,0
00148 000A COUNT EQU 10 DECIMAL DIGITS = Z0

AUSTIN,TEXAS--MICROCOMPUTER CAPITAL OF THE l.!ORLDI
M6800-M6809 CROSS-ASSEMBLER 2.2
PAGE 006 BENCH I ES

00151 1535 30 SD 0038 9 LEAX INPUT,PCR
00152 1539 31 SD 0047 9 LEAY OUTPUT,PCR
00153 153D cc 0004 3 LDD •CHARS4
00154 1540 8D 23 7 BSR PACKS
00155 1542 20 FE 3 BRA llE

00157 llE

00158 llE PACK PUTS FOUR RIGHT-JUSTIFIED 6-BIT CHARS C IX>
00159 it: INTO THREE PACKED 8-BlT BYTES C I y)
00160 * 00161 1544 EC 81 8 PACK LDD ,x++ GET FIRST TWO CHARS
00162 1546 58 2 ASLB
00163 1547 58 2 ASLB
00164 1548 58 2 ASLB
00165 1549 49 2 ROLA
00166 154A 58 2 ASLB
00167 1548 49 2 ROLA
00168 llE HERE ACCA IS PACKED AND ACCB = XXXX0000
00169 llE
00170 154C A7 A0 6 STA ,Y+ STORE FlRST PACKED BYTE
00171 154E A6 84 4 LOA 0,X GET THIRD CHAR
00172 1550 44 2 LSRA
00173 1551 44 2 LSRA
00174 1552 84 0F 2 ANDA +f0F MAKE MS NYBBLE CLEAN
00175 IE HERE ACCB HOLDS MS NYBBLE
001.76 !IE AND ACCA HOLDS LS NYBBLE
00177 llE
00178 1554 34 04 5 F'SHS B PUT B IN STACK TEMP
00179 1556 AA E0 6 ORA ,s+ NOW TOGETHER, CLEAN STACK
001.80 1558 A7 A0 6 STA ,Y+ STORE SECOND PACKED BYTE
00181 155A EC 81 8 LDD ,x++ GET LAST TWO CHARS
00182 llE
00183 !IE PICK UF' 2 LSB FROM ACCA AS 2 MSB IN ACCB
00184 155C 58 2 ASLB
00185 1550 58 2 ASLB
00188 tSSE 44 2 LSRA
00187 155F 56 2 RORB
00188 1560 44 2 LSRA
00189 1581 58 2 RORE
00190 1562 E7 A0 6 STB ,Y+ STORE THIRD PACKED BYTE
00191 1584 ::i9 5 RTS

-
AUSTIN,TEXAS--MICROCOMPUTER CAPITAL OF THE WORLD!
M6800-M6809 CROSS-ASSEMBLER 2.2
PAGE 007 BENCl-IIES

00194 !IE

00195 !IE PACKS TAKES 4 llE ACCO 6-BIT CHARS C IX> AND PACKS
00196 !IE THEM INTO 3 !IE ACCO 8-BIT BYTES CIY>
00197 !IE

00198 1565 4C 2 PACKS INCA ADJUST COUNT MS BYTE
00199 1566 34 06 6 PSHS D COUNT·ON THE STACK
00200 1568 80 DA 7 PAC1 BSR PACK PACK 4 INTO 3
00201 156A SA 61 7 DEC 1,s LS COUNT
00202 156C 26 FA 3 BNE PA Ct
00203 t56E 6A E4 6 DEC 0,S MS COUNT
00204 1570 26 F6 3 BNE PAC1
00205 1572 35 86 B PULS O,PC CLEAN UP STACK, RETURN

00207 1574 50 INPUT FCC /PACK THESE CHARS/
00208 0004 CHARS4 EQU llE-INPUT/4
00209 1584 00 OUTPUT FCB 0,,,,,,,,,,,0

• ...

AUSTIN,TEXAS--MICROCOMPUTER CAPITAL OF THE l.JORLD!
M6800-M6809 CROSS-ASSEMBLER 2.2
PAGE 008 BENCH I ES

002'12 1590 30 80 FFF0 9 LEAX IN,PCR
00213 1594 31 80 0045 9 LEAY OUT,PCR
00214 1598 cc 0004 3 LDD t=BYTES3
00215 159B 34 20 6 PSHS y
00216 159D 80 2F 7 BSR UNPAKS
00217 159F A6 A2 6 TOASC LDA ,-Y GET A CHAR
00218 15A1 85 20 2 BITA +120 IF BS NOT •••
00219 t5A3 26 04 3 BNE T01 •.• THEN 86
00220 15AS 8A 40 2 ORA •f40 C INTO ASC I I)
00221 t5A7 A7 A4 4 STA ,y
00222 15A9 10AC E4 7 T01 CMPY ,s DONE GOING BACK?
00223 15AC 22 Ft 3 BHI TOASC
00224 15AE 32 82 5 LEAS 2,S
00225 t5B0 20 FE 3 BRA llE

00227 !l
00228 llE UNPACK RETURNS THREE PACKED 8-BIT BYTES C IX>
00229 llE INTO FOUR RIGHT-JUSTIFIED 6-BIT CHARS C IY>
00230 llE
00231 1582 34 06 6 UNPACK PSHS D SAVE ACCD
00232 1584 EC 80 7 LDD ,x+ GET 1ST + 2ND BYTES
00233 1586 44 2 LSRA
00234 1587 56 2 RORB : 16-BIT SHIFT, TWO PLACES
00235 1588 44 2 LSRA
00236 1589 56 2 RORB
00237 !IE HERE ACCA rs AN UNPACKED BYTE
00238 llE
00239 15BA 54 2 LSRB
00240 15BB 54 2 LSRB
00241 !IE NOW ACCB IS ALSO UNPACKED
00242 Iii
00243 15BC ED At 8 STD ,Y++ STORE 1ST + 2ND CHARS
00244 15BE EC 80 7 LDD .x+ GET 2ND + 3RD BYTES
00245 15C0 58 2 ASLB
00246 15C1 49 2 ROLA ANOTHER SHIFT, n.io PLACES
00247 15C2 58 2 ASLB
00248 15C3 49 2 ROLA
00249 15C4 84 3F 2 ANDA :t13F CLEAR TOP Tl.JO BITS
00250 • HERE ACCA IS UNPACKED
00251 llE
00252 15C6 ES 80 s LDB ,x+ GET 3RD BYTE AGAIN
00253 15C8 C4 3F 2 ANDB ott3F
00254 llE NOW BOTH ARE UNPACKED
00255 tSCA ED At 8 STD ,Y++ STORE 3RD + 4TH CHARS
00256 15CC 35 86 8 PULS D,PC RECOVER ACCO, RETURN

I

AUSTIN,TEXAS--MICROCOMPUTER CAPITAL OF THE WORLD!
M6800-M6809 CROSS-ASSEMBLER 2.2
PAGE 009 BENCHIES

00259 llE

00260 !IE UNPAKS TAKES 3 !IE ACCD 8-BIT BYTES C IX)
00261 llE 6-BIT CHARS INTO 4 llE ACCO BYTES
00262 llE

00263 iSCE 4C 2 UNPAKS INCA ADJUST CTR MS BYTE
00264 15CF 34 06 6 PSHS D COUNT ON THE STACK
00265 1501 80 DF 7 UNP1 BSR UNPACK UNPACK 3 INTO 4
00266 1503 6A 61 7 DEC 1, s LS COUNT
00267 1505 26 FA 3 BNE UN Pt
00268 15D7 SA E4 6 DEC 0,5 MS COUNT
00269 1509 26 F6 3 BNE UNF'i

AND PUTS

00270 15DB 35 88 8 PULS D,PC CLEAN UP STACK, RETURN

00272 1584 IN EQU OUTPUT
00273 0004 BYTES3 EQU CHARS4
00274 1500 00 OUT FCB 0,0,0,,,,,,,,,,,,,,,0,0.0

...

•
AUSTIN,TEXAS--MICROCOMPUTER CAPITAL OF THE WORLD!
M6800-M6809 CROSS-ASSEMBLER 2.2
PAGE 010 BENCHIES

00277

00279
00280
00281
00282 15F1 30
00283 15FS 31
00284 15F9 34
00285 15FB 31
002e.s 1 SFF CE
00287 1602 86
00288 1604 34
00289 1806 BD
00290 1608 32
00291 160A 20
00292
00293
00294
00295
00296
00297
00298
00289
00300
00301
00302
00303
00304
00305
00306
00307
00308
00309
00310
00311 160C AS
00312 160E CS
00313 1610 A7
00314 1612 SA
00315 1613 26
00316
00317
00318 1615 ES
00319 1617 EE
00320 1619 SA
00321 1 S1 A AS
00322 161C 84
00323 161E E7
00324 1620 SD
00325 1621 26

0400

80 0061
BD 0089
30
BD 004F
0400
08
62
04
69
FE

62
80
C0

FB

62
65

A0
7F
cs

FS

DELTA0 EQU S400 START OF DELTA0 TABLE

!IE SUB-LINEAR STRING SEARCH
llE

S SETUP LEAX
LEAY
PSHS
LEA'f
LDU
LDA
PSHS
BSR
LEAS
BRA

TEXT,PCR START OF TEXT STRING
TEXTEN,PCR END OF TEXT STRING 9

8
9
3
2
9
7
5
3

Y,X
PAT,PCR
:tDELTA0
:tPATLEN
U,Y,A
SLSS
s.s
*

START OF PATTERN
POINT AT OFFSET TABLE
GET PATTERN LENGTH (• LE. 255 ! >

!IE BOYER + MOORE, •A FAST STRING SEARCHING
!IE ALGORITHM" COMM. ACM VOL.20 N0.10,
llE OCT. '77 PP.762-772.

*
llE C SP+0)
!IE

llE < SP+2)
llE C SP+3)
!IE
!IE C SP+S)
llE
I: (SP+ 7)

!IE (SP+9)
llE

= RETURN CH)
RETURN CL)

= PATLEN
= PAT CH)

PAT CL)
= DEL TA0 (H)

DEL TA0 CL)
= TEXT < H >

TEXT (L)
= TEXTEN CH)

TEXTEN CL)

!IE INITIALIZE DELTA0 TABLE
5 SLSS LDA 2,S GET PATTERN LENGTH
2
S SE1
2
3

5
6
2 SE2
8
2
5
2
3

LDE :t128
STA ,U+
DECB
BNE SE1

FINISH DELTA0
LDB 2,S
LDU 5,S
DECB
LOA , Y +
ANDA :tf 7F
STB A,U
TSTB
BNE SE2

TABLE SIZE
)

FILL TABLE WITH
> PATTERN LENGTH

OFFSET TABLE
GET PATTERN LENGTH
POINT AT DELTA0 TABLE

GET A CHAR
MASK MSB
STORE COUNT AT DELTA0 CCHAR)

AUSTIN,TEXAS--MICROCOMPUTER CAPITAL OF THE WORLD!
M6800-M6809 CROSS-ASSEMBLER 2.2
PAGE 011 BENCHIES

00328 1623 31 3F
00329 1625 10AF 63
00330 1628 AE 67
00331 162A 4F
00332 162B ES 62
00333
00334
00335
00336
00337
00338
00339
00340 162D SA
00341 162E 30 85
00342 1630 AC 69
00343 1832 22 19
00344 1634 E6 84
00345 1636 ES CS
00346 1638 26 F4
00347
00348
00349
00350
00351 163A SC
00352 1638 E1 62
00353 163D 24 0C
00354 163F AS 82
00355 1641 Ai A2
00358 1843 27 F5
00357 1645 5C
00358 1646 10AE 63
00359 1649 20 E3
00360
00361
00362 1648 1A 04
00363 1640 39

00365 164E 50
00366 0008
00367 1656 20
00368 1S6C 50
00389 1882

5
7
6
2
5

2

LEAY -1,Y
STY 3,S
LOX 7,S
CLRA
LOB 2,S

WENT PAST!
SAVE END-OF-PATTERN
START OF TEXT STRING

PATTERN LENGTH

~ (IX)= START OF 'TEXT STRING'
* AND WILL SEARCH 'TEXT STRING'
* CUS> =THE DELTA0 TABLE
* (IY> =LAST CHAR OF 'PATTERN'
* AND WILL DECR AS MATCH IS FOUND

DECB
5 FAST
7

LEAX B,X
CMPX 9,S
BHI NOTFND
LOB 0,X

POINT AT NEXT TRY IN TEXT
PAST THE END OF TEXT?
YES, NOT FOUND CZ=0) 3

4
5
3

LOB
BNE

B,U
FAST

GET CHAR INTO B
GET DELTA0 QF CHAR
BRANCH IF NOT SAME

* DELTA1 CCHAR) = 0 IFF CHAR= PAT CPATLEN)
* HERE B IS OBVIOUSLY ZERO, SO ••.
llE

2 SLOW
5
3
6
6
3
2
7
3

.:
llE

INCB
CMPB 2,S
BHS FOUND
LDA ,-X
CMPA ,-Y
BEQ SLOW
INCB
LDY 3,S
BRA FAST

ONE MATCH ALREADY
GOT ENOUGH MATCHES?
YES, RETURN FOUND
GET ANOTHER CHAR
IS IT MATCHED?
IF YES, GO SLOW
PAST ORIGINAL MATCH

END-OF-PATTERN
C RESET I Y)

3 FOUND ORCC •S04
5 NOTFND RTS

RETURN Z=t

PAT FCC /PATTERN I
PAT LEN EQU 1€-PAT
TEXT FCC I A STERN EXAMPLE OF A I

FCC /PATTERN SEARCH IN TEXT./
TEX TEN EQU !IE-1

-

•
AUSTIN,TEXAS--MICROCOMPUTER
M6800-M6809 CROSS-ASSEMBLER
PAGE 012

00372 1683
00373 1686
00374 168A
00375 168E
00376 1690

00378
00379
00380
00381 1892
00382 1693
00383 1695
00384 1897
00385 1699
00386 •1698
00387 1690
00388 169F
00389 16A1

00391 16A3
00392 16AD
00393

cc
30
31
80
20

4C
34
EC
ED
•A
26
6A
26
35

BENCH I ES

0005
80 0019
80 001F
02
FE

06
81
At
61
F8
E4
F4
86

01
00
000A

3
9
9
7
3

2
6
B
B
7
-.
,:i

6
..,. -·
8

CAPITAL OF Tl-IE t.JORLD!
2.2

LOO
LEAX
LEAY
BSR
BRA

" llE OCPY COPIES

* DCP'(INCA
PSHS

DCi LDD
STD
DEC
ENE
DEC
ENE
PULS

ORIGIN FCB
DEST FCB
LONG EQU

t:LONG/2
ORIGIN,PCR
DEST,PCR
OCPY
!l

2!1EACCD BYTES FROM C IX+) TO C IY+ >

MS COUNT CORRECTION
D SAVE D
,x++ GET TWO BYTES
,Y++ PUT HJO BYTES
t , s COUNT LS BYTE
DCt
0,s COUNT MS BYTE
DC1
D,PC CLEAN STACK, RETURN

0,,,,,,,,,0
10

..

6.3 SYSTEM EXAMPLE -- MTEST

MTEST is a nice, fast {proportional to N rather than N2)
memory test system. The package has self-contained I/0
routines, is completely position-independent, and uses
no absolute RAM (all parameters and temporary variables
exist on the stack).

Note the use of LEA to point at text strings in a
position-independent manner. Note also the use of a
branch table near the start of the program which allows
external access to internal subroutines. This allows
MTEST to be updated without requiring changes in code
that may use MTEST subroutines. And note that the I/0
routines use absolute values on the stack to point at
I/0 devices. By using a PROM to set up these values (and
the stack pointer itself), the same code can be used in a
large number of diverse systems.

The User Stack Pointer is used to mark the original top
of the stack (the stack bottom for this system) so that
temporary locations may be accessed with similiar offsets
from different subroutine levels. The stack mark techni­
que also allows the unstructured system-abort technique
which requires no knowledge of present subroutine level
to completely clean up the stack.

-
AUSTIN,TEXAS--MICROCOMPUTER CAPITAL OF THE WORLD!
MS800-M6809 CROSS-ASSEMBLER 2.2
PAGE 001 MTEST9 PSEUDO-RANDOM MEMORY TEST

00001
00003
00004
00005
00006
00007

00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032
00033
00034
00035
00036
00037
00038
00039
00040
00041
00042
00043
00044
00045
00046
00047
00048
00049
00050
00051
00052
00053

NAM MTEST9

* *COPYRIGHT CC) 1978 MOTOROLA lNC, AUSTIN, TX
* MPU SYSTEMS DESIGN, T. F. RITTER
* 3.0/01127/78/TFR
*. 3.1/03/08/78/TFR+WMK

* MTEST9 rs A FAST MEMORY TEST SYSTEM. IT HAS
* SELF-CONTAINED I/O, IS COMPLETELY POSITION-
* INDEPENDENT, AND USES NO ABSOLUTE RAM. lT MAY
* BE PLACED IN UNDER 1K OF ROM.

* * MTEST9 rs ENTERED AT ITS FIRST LOCATION,
* AND ASKS FOR START/STOP ADDRESSES FOR THE
* TEST. THE LAST FOUR HEX CHARS BEFORE <CR>
* ARE ACCUMULATED; A NULL ENTRY PRESERVES THE
* ORIGINAL ADDRESSES. IF AN 'M' IS ENTERED,
* MTEST9 WILL COPY ITSELF INTO A NEW LOCATION
* BEGINNING AT THE CURRENT START ADDRESS, AND
* RESTART AT THAT ADDRESS.

* MTEST9 STORES A SEQUENCE OF BYTES THROUGH-
* OUT THE MEMORY TEST AREA, THEN COMPARES THE
* RECOVERED SEQUENCE TO THE INTERNALLY-GENERATED
* SEQUENCE. ANY ERRORS CAUSE DISPLAY OF THE
* ERROR ADDRESS AND THE BlTS lN ERROR; ALL STUCK
* BITS AND IMPROPER ADDRESS-DECODE ERRORS CAN
* BE FOUND, AND SOME PATTERN-SENSITlVlTlES ARE
* ALSO EXERCISED. AN 'X' rs PRlNTED FOR EACH
* PASS THROUGH MEMORY; EIGHT X'S IS A FUNCTIONAL
* TEST, AND 'ALL DONE!' WlLL PRINT AFTER THE
* FULL SEQUENCE OF 211 PASSES; THEN MTEST9 WlLL
* START OVER. AN <ESC> ALWAYS RESTARTS MTEST9;
* <CONTROL X> ALWAYS RETURNS TO THE CALL[NG
* SYSTEM <MAID, IN THE EXORClSOR>.

*
* A SHORT INITIALIZATION ROUTINE IS USED TO
* CONFIGURE MTEST9 FOR THE EXORCISOR; CONTROL
* THEN FALLS INTO M0, WHICH rs THE GENERAL TEST
* SYSTEM. DlFFERENT HARDWARE CONFIGURATIONS
* NEED ONLY SET UP THE STACK, PUSH A ZERO MODE
* BYTE, PUSH THE ABSOLUTE ADDRESSES OF THE ACIA
* CONTROL AND DATA PORTS, THEN CALL TVM0 AT
* MTEST+3. ALTERNATELY, PUSHING A NON-ZERO
* MODE BYTE AND ABSOLUTE ADDRESSES OF INPUT AND
* OUTPUT ROUTINES WILL ALLOW ALL l/O TO BE DONE
* EXTERNALLY CNOTICE THE SPECIAL PARAMETER
* REQUlREMENTS OF INCH: ACCA IS SENT TO INCH AS
* A PARAMETER. IFF B7 OF ACCA IS 0, INCH WILL
* WAIT FOR A NEW CHAR. IFF ACCA=0, INCH WILL
* ECHO CHAR TO OUTCH. INCH RETURNS THE RECOVERED
* CHAR IN ACCA.)

AUSTIN,TEXAS--MICROCOMPUTER CAPITAL OF THE WORLD!
M6800-M6809 CROSS-ASSEMBLER Z.Z
PAGE 002 MTEST9 PSEUPO-RANOOM MEMORY TEST

00056
00057
00058
00059
00060
00061
00062

00064
00065

00067
00068
00069
00070
00071
00072
00073
00074
00075

FttE
000D
0D0A
0018
0018
0020
0024

FCF4
FCFS

0080
0040
0020
0010
0008
0004
0002
0001

MAID
CR
CRLF
CTLX
ESC
SPACE
STACKS

AC I AC
AC I AD

EQU
EQU
EQU
EQU
EQIJ
EQU
EQU

EQU
EQU

SF11E
100
1000A
118
118
f.20
124

IFCF4
fFCFS

* CONDITION CODE BITS
E EQU 180
F
H
I
N
z
v
c

EQU
EQU
EQU
EQU
EQU
EQU
EQU

140
120
110
108
104
f02
t:01

REENTRY ADDRESS
ASCII CR
ASCII CRLF
ASCII CANCEL (CONTROL X)
ASCII ESCAPE
ASCII SPACE
STACK AREA (MAX SIZE)

ACIA CONTROL REGISTER
ACIA DATA REGISTER

00077
00078
00079
00080
00081
00082
0008.3
0008.4
00085

007F
00BF
00DF
00EF
00F7
00FB
00FD
00FE

* NE
CONDITION CODE BITS CNOT)

EQU f7F
NF
NH
NI
NN
NZ
NV
NC

EQU fBF
EQU SDF
EQU SEF
EQU f.f 7
EQU SFB
EQU f.FD
EQU f.FE

• 1111

AUSTIN,TEXAS--MICROCOMPUTER CAPITAL OF THE WORLD!
M6800-M6809 CROSS-ASSEMBLER 2.2
PAGE 003 MTEST9 PSEUDO-RANDOM MEMORY TEST

00088 0400 ORG $0400 POSITION INDEPENDENT
00089 0400 16 003F 5 MT EST LBRA M2

00091 !IE

00092 • TRANSFER VECTORS
00093 *
00094 0403 16 0040 5 TVM0 LBRA M0 GENERAL PURPOSE ENTRY
00095 0406 16 028D 5 TVINIA LBRA IN I TAC INIT. ACIA
00096 0409 16 0281 5 TVGCH LBRA GCH GET PRESENT CHAR IN ACCA
00097 040C 16 0300 5 TV INCH LBRA INCH A=0 FOR ECHO, BlT7=0 FOR WAIT
00098 040F 16 02F7 5 TVlNNP LBRA INCHNP CHAR W/O PARITY IN ACCA
00099 0412 16 031D 5 TVIN1H LBRA IN1H CHR IN A, HEX IN B, NEG IF BAD
00100 0415 16 0207 5 TVINAD LBRA lNADDR GET CHARS UNTIL NON-HEX
00101 0418 16 01AB 5 TVBEGE LBRA BE GE ND GET ADDRESSES IN 0,X - 3,X

00103 0418 16 0241 5 TVOUT LBRA OUT SEND CHAR FROM ACCA NOW
00104 041E 16 0283 5 TVOUTC LBRA OUTCH SEND CHAR WHEN READY
00105 0421 16 029A 5 TVHEXL LBRA CHEXL CONVERT ACCA HSN TO HEX (ASC I I >
00108 0424 16 0298 5 TVHEXR LERA CHEXR CONVERT RIGHT NYBBLE
00107 0427 18 02A5 5 TVOUT2 LERA OUT2H SEND 2 HEX C IX)
00108 042A 16 02A0 5 TVOUT4 LERA OUT4H SEND 4 HEX (IX)
00109 0420 16 02AF 5 TVPDAT LBRA PDATA SEND CRLF, DATA
00110 0430 18 02AE 5 TVPDA1 LERA PDATA1 SEND DATA .•• THRU MSB=1
00111 0433 16 0288 5 TVPCRL LBRA PCRLF SEND CRLF NULLS
00112 0438 18 02C9 5 TVREF· LBF:A REPEAT SEND ACCA, B TIMES
00113 0439 16 02C4 5 TVRSR LERA RS PACE SEND SPACE, B TIMES

00115 043C 16 0125 5 TVPRIN LBRA PR I NB I SEND ACCB AS BINARY
00116 043F 18 0116 5 TVRAND LBRA RAND PSEUDO-RANDOM ACCA

00118 ll
00119 llE M2 CONFIGURES FOR EXORCISOR
00120 * 00121 !IE CANOTHER SYSTEM MIGHT INITIALIZE
00122 llE THE STACK, STACK I/O ADDRESSES,
00123 llE THEN CALL TVM0 IN A SMALL PROM).
00124 llE
00125 0442 32 BC BB 7 M2 LEAS MTEST,PCR STACK BELOW PROGRAM
00126 0445 6F E2 8 CLR .-s INTERNAL I/O MODE
00127 0447 CE FCF4 3 LDU #AC I AC
00128 044A 108E FCF5 4 LDY t:ACIAD
00129 044E 8E Ft1E 3 LOX t:MAlD
00130 0451 34 70 1.0 PSHS U,Y,X ABSOLUTES ON STACK
00131 ll FALL INTO THE GENERAL-PURPOSE PACKAGE M0

-
AUSTIN,TEXAS--MICROCOMPUTER CAPITAL OF THE WORLD!
M6800-M6809 CROSS-ASSEMBLER 2.2
PAGE 004 MTEST9 PSEUDO-RANDOM MEMORY TEST

00134 0453 1F
00135 0455 32

00137
00138
00139
00140
00141
00142
00143
00144
00145
00146
00147
00148
00149
00150
00151
00152
00153

00155
00156
00157 0457 1.7
00158
00159
00160 045A 17
00161
00162
00163 045D 30
00164 0461 17
00165
00168
00167 0464 30
00168 0467 17
00169 046A 86
00170 04SC 17
00171 046F 30
00172 0473 17
00173
00174
00175 0476 17
00176
00177
00178 0479 86
00179 0478 A7
00180 047D A7
00181 047F SF
00182
00183
00184 0481 A6
00185 0483 AE

43
77

0006
0004
0~)04

0002
0002
0000
FFFF
FFFE
FFFD
FFFB
FFF9
FFF8
FFF7

0300

6 M0
5

llE

TFR S,U
LEAS -9,S

MARK STACK
AREA FOR TEMP GLOBALS

* EQUATES ARE RELATIVE POSITION
~ FROM USER STACK POINTER.

MODE
CIAC
INSUB
CIAD
OUT SUB
MAI
SEED
FLAG
XCOUNT
END AD
BEGAD
NUCH
OLCH

*

EQU
EOU
EQU
EQU
EQU
EOU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

6
4
4
2
2
0
-1
-2
-3
-5
-7
-8
-9

I/O SELECT (0 MEANS ACIA AD
ACIA CONTROL
GET CHAR IN A
ACIA DATA
SEND CHAR FROM A
MAID RETURN
STARTING PSEUDO-RANDOM VALUI
ERROR HEADlNG PRINTED? FLAG
NO. OF X'S ON LINE
END ADDRESS
BEGIN ADDRESS
NEW CHAR <ESCAPE TEST>
OLD CHAR

* VERIFY PROGRAM CORRECTNESS
9 Mt LBSR VERPGM

FFA9 9
INITIALIZE ACIA

LBSR TVlNIA

BD 0068 9
0278 9

8C 99 7
02E7 9
ZD 2
0235 9
8D 0319 9
02DB 9

010F 9

PRINT PROGRAM ID
LEAX MSG1,PCR POINT AT MSG1
LBSR PDATA PRINT IT

PRINT PROGRAM LOCATION
LEAX MTEST,PCR
LBSR PRNTIX
LDA
LBSR
LEAX
LBSR

OUT CH
PGMEND,PCR
PRNTIX

GET ADDRESSES
LBSR GETAD

01
SF
SD
SE

!l INITIALIZE
2 TSTS LDA •1

SF
59

S STA SEED,U SEED VALUE
5 STA XCOUNT,U CRLF ON NEXT X
7 CLR FLAG,U NO HEADING YET

* STORE PSEUDO-RANDOM SEQUENCE
5 TESTM LDA SEED,U GET SEED
6 LDX BEGAD,U

•
AUSTIN,TEXAS--MICROCOMPUTER CAPITAL OF THE WORLD!
MS800-MS809 CROSS-ASSEMBLER 2.2
PAGE 00S MTEST9 PSEUDO-RANDOM MEMORY TEST

00186 0485 30
00187 0487 30
00188 0489 17
00189 048C A7
00190 048E AC
00191 0490 20
00192
00193
00194 0492 AS
0019S 0494 AE
00196 0496 30
00197 049f!. 30
00198 049A 17
00199 049D E8
00200 049F 34
00201 04A1 At
00202 04A3 27
00203 04AS 17
00204 04A8 AC
0020S 04AA 2D
00206
00207

1F
01
00CC
84
SB
F5

SF
S9
1F
01
00BB
84
04
E0
03
005F
SB
EC

00208
00209
00210
00211
00212
00213
00214
00215
00216

04AC 17 0048
04AF 1027 FFA0
0483 AS SF
04BS 17 00A0
0488 A7 SF
04BA 81 01
04BC 26 C3

04BE 30
04C2 17
04C5 30
04C7 20

00217
00218
00219
00220
00221
00222
00223 04C9
00224 04CB
0022S 04EC
00226 04ED
00227 04F6

8D 002B
021C
59
80

0D0A
S0
A4
41
A0

5
S TST1

4
7
3

LEAX
LEAX
LBSR
STA
CMPX
BLT

-1,X DEX
1,X NEXT LOCATION
RAND DO PSEUDO-RANDOM IN A
0,X
ENDAD,U ALL DONE ENTRY SWEEP?
TSTt NO, GO AGAIN

~ CHECK RECOVERED SEQUENCE
S LOA SEED,U GET SEED AGAIN
6 LOX BEGAD,U
S LEAX -1,X
5 TST2 LEAX 1,X
9 LBSR RAND
4
5
6
3
9
7 TST3
3

LOB
PSHS
CMPA
BEQ
LBSR
CMPX
BLT

0,x
B
,s+
TST3
ERR
ENDAD,U
TST2

SAVE CHAR FROM MEM
CBA

ALL DONE CHECK SWEEP?
NO, GO AGAIN

~ DO PASSES UNTIL END OF SEQUENCE
9
6
5
9
5
2
3

9
9
s
3

llE

LBSR PRNTX SINGLE PASS DONE
LBEQ M0 OUT IFF ESC
LDA
LBSR
STA
CMPA
BNE

SEED,U
RAND
SEED,U
:II: 1
TES TM

UPDATE SEED

END OF PSEUDO-RANDOM SEQUENCE
DO ANOTHER PASS

llE PRINT DONE, THEN START OVER

* llE

MSG1

ENDM

LEAX ENDM,PCR POINT AT END MESSAGE
LBSR PDATA1
LEAX BEGAD,U
BRA TSTS ANOTHER COMPLETE TEST

FDB
FCC
FCB
FCC
FCB

CRLF
/PSEUDO-RANDOM MEMORY TEST 3.1 AT I
fA4 f W/MSB=t
/ALL DONE!/
IA0

I

AUSTlN,TEXAS--MICROCOMPUTER CAPITAL OF THE WORLD!
M6800-M6809 CROSS-ASSEMBLER 2.2
PAGE 006 MTEST9 PSEUDO-RANDOM MEMORY TEST

00230 !IE

00231 • PRINT AN X FOR EACH PATTERN-TEST
00232 !IE

00233 * BLOWS A
00234 * 00235 04F7 SA SD 7 PRNTX DEC XCOUNT,U LlNE FULL?
00236 04F9 26 07 3 BNE PR1 NO, NEED NO CRLF
00237 04FB 86 40 2 LOA :t64 CRLF IMPLIES NEW CHAR CNT
00238 04FD A7 SD 5 STA XCOUNT,U
00239 04FF 17 01EC 9 LBSR PCRLF
00240 0502 86 58 2 PR1 LDA "', x
00241 0504 16 019D 5 LBRA OUT CH PRINT X

00243 * 00244 * 00245 !IE ERR PRINTS DATA FOUND IN ERROR
00246 !IE IX (2, s) = LOCATION OF ERROR
00247 * ACCB (1 , s) = VALUE READ FROM MEMORY
00248 * ACCA (0, s) = PSEUDO-RANDOM VALUE
00249 * 00250 0507 34 16 8 ERR PSHS X,B,A
00251 0509 BG 01 2 LDA •1 CRLF ON NEXT X
00252 0508 A7 SD 5 STA XCOUNT,U
00253 0500 60 SE 7 TST FLAG,U ERROR HEADING PRINTED?
00254 050F 26 09 3 BNE Et YES, DON'T PRINT AGAIN!
00255 0511 SC SE 7 INC FLAG,U REMEMBER, ·IT'S PRINTED!·
00258 0513 30 8D 001A 9 LEAX HDR,PCR POINT AT HEADER MSG
00257 0517 17 01C5 9 LBSR PD AT A
00258 051A 17 0101 9 Et LBSR PCRLF
00259 0510 30 62 5 LEAX 2,s POINT AT SAVED x
00260 051F 17 01AB 9 LBSR OUT4H PRINT ADDRESS
00261 0522 CG 03 2 LOB •3
00262 0524 17 0109 9 LBSR RS PACE
00283 0527 ES 61 5 LDB 1,s MEMORY VALUE
00264 0529 8D 39 7 BSR PR I NB I PRINT MEMORY VALUE
00265 0528 EB E4 4 EORB 0,s DESIRED VALUE
00288 052D 80 35 7 BSR PRIN8I PRINT ERRORS AS 1'S
00267 052F 35 96 10 PULS A.B,X,PC GET SAVED REGS, RET
00288 " 00269 llE
00270 053"1 0D0A HOR FDB CRLF
00271 0533 41 FCC /ADDRESS READS
00272 0548 42 FCC /BIT-IN-ERROR/
00273 0557 A0 FCB IA0

•

AUSTIN,TEXAS--MICROCOMPUTER CAPITAL OF THE WORLD!
M6800-M6809 CROSS-ASSEMBLER 2.2
PAGE 007 MTEST9 PSEUDO-RANDOM MEMORY TEST

00276
00277
00278
00279
00280 0558 34 02 5
00281 055A 46 2
00282 0558 46 2
00283 055C 46 2
00284 0550 A8 E4 4
00285 055F 46 2
002S6 0560 35 02 5
002S7 0562 46 2
00288 0563 39 5

00290
00291
00292
00293
00294
00295 0564 34 06 6
00296 0566 86 08 2
00297 0568 34 02 5
00298 056A 58 2
00299
00300 0568 25 04 3
00301 056D 86 30 2
00302 056F 20 02 3
00303 0571 86 31 2
00304 0573 17 012E 9
00305 0576 86 20 2
00306 0578 17 0129 9
00307 0578 6A E4 6
00308
00309 0570 26 EB 3
00310 057F 35 02 5
00311 0581 cs 02 2
00312 0583 17 017A 9
00313 0586 35 BS 8

* ~ RAND GENERATES A 211 BYTE
llE SEQUENCE IN ACCA
llE

RAND PSHS
RORA
RORA
ROFi:A
EORA
RORA
PULS
RORA
RTS

!IE

A

0,S

A

SAVE CURRENT ff

GET SAVED +, CLEAN STACK
ROTATED, 1 BIT CHANGED

!IE PRINE I OUTPUTS THE VALUE IN B
!IE AS BINARY ASCII, MSB FIRST,
llE THROUGH ACCA, TO SUBROUTINE OUT CH

*
f·R I NB I PSHS B,A SAVE STATE

LOA •108
PSHS A SAVE BIT COUNTER

Tt LSLE GET NEXT BIT
!IE BRANCH IF CARRY A ONE

BCS T2
LDA •'0
BRA T3

T2 LDA :t, 1

T3 LESR OUT CH SEND IT
LDA +SPACE
LBSR OUT CH
DEC 0,S COUNT IT

llE BRANCH IF NOT A WHOLE BYTE DONE
ENE T1
PULS A CLEAN UP COUNTER
LDB =11=2 2 SPACES
LBSR RS PACE
PULS A,B,PC RECOVER STATE, RET

11111

-
AUSTIN,TEXAS--HICROCOMPUTER CAPITAL OF THE WORLD!
H6800-M6809 CROSS-ASSEMBLER 2.2
PAGE 008 MTEST9 PSEUDO-RANDOM MEMORY TEST

00316 !IE

00317 * GETAD GETS ADDRESSES INTO 0,X - 3,X.
00318 !IE GOES AGAIN IF TEST l-IOULD OVERl-IRITE
00319 !IE MTEST9.
00320 !IE

00321 0588 30 59 s GE TAD LEAX BEGAD,U
00322 058A 17 0039 9 LBSR BEGEND
00323 0580 30 BD 01FB 9 LEAX PGMEND,PCR END OF MTEST
00324 0591 AC 59 7 CMPX BEGAD,U
00325 0593 25 18 3 BLO OK TESTING AFTER MTEST

00327 0595 30 BD FE67 9 LEAX MTEST,PCR START OF MTEST
00328 0599 30 88 DC 6 LEAX -STACKS,X ENCLOSE THE STACK
00329 0S9C AC 59 7 CMPX BEGAD,U
00330 059E 23 04 3 BLS NOPE TESTING INSIDE HTEST!

00332 05A0 AC SB 7 CMPX ENDAD,U
00333 05A2 22 09 3 BHI OK
00334 05A4 30 80 0006 9 NOPE LEAX DANMSG,PCR DANGER MESSAGE!
00335 05A8 17 0134 9 LBSR PDATA
00336 05AB 20 DB 3 BRA GETAD

00338 05AD 39 5 OK RTS

00340 05AE 44 DANMSG FCC /DON'T OVERWRITE MTEST9!/
00341 05C5 A0 FCB SA0

00343 IE
00344 • BEGEND GETS BEGIN AND END
00345 !IE ADDRESSES FROM KEYBOARD
00346 !IE AND PUTS THEM IN RAM (IX>.
00347 !IE BEGIN .LE. END OR TRYS AGAIN.
00348 * 00349 !IE (X): C X+1) = BEGIN
00350 !IE (X+2): C X+3) = END
00351 !IE
00352 0SCS 34 06 s BEGEND PSHS B,A SAVE STATE
00353 05C8 8D 1F 7 BSR INST GET BEGIN ADDR
00354 05CA 30 02 5 LEAX 2,x
00355 05CC 8D 32 7 BSR INF IN GET END ADDR
00356 05CE EC 84 5 LOO 0,X
00357 0500 A3 83 s SUBD ,--x BEGIN .LE. END?
00358 05D2 25 F2 3 BLO BEGEND
00359 0504 35 86 8 PULS A,B,PC RECOVER STATE, RET

•
AUSTIH,TEXAS--MICROCOMPUTER CAPITAL OF THE WORLD!
M6800-M6809 CROSS-ASSEMBLER 2.2
PAGE 009 MTEST9 PSEUDO-RANDOM MEMORY TEST

00361
00362
00363
00364
00365 0506 34
00366 0508 86
00367 05DA 68
00368 05DC 69
00369 05DE 4A
00370 05DF 26
00371 05E1 35

00373
00374
00375
00376
00377
00378
00379
00380
00381 05E3 81
00382 05ES 1027
00383 05E9 34
00384 05EB 30
00385 05EF 1.7
00386 05F2 35
00387 05F4 17
00388 05F7 26
00389 05F9 39
00390
00391
00392
00393
00394
00395
00396
00397

02
04
01
84

F9
82

40
0050
10
BD 0022
00ED
10
0028
EA

00398 05FA 81 40
00399 05FC 1027 0046

00401 0600 34
00402 0602 30
00403 0606 17
00404 0609 35
00405 060B 17
00406 060E 26
00407 0610 39

00409 0611
00410 0618
00411 0619
00412 061E

10
BD 0013
00D6
10
0011
EA

20
A0
20
A0

!IE
llE ASLM4 SHIFTS TWO BYTES CX):CX+1)
llE LEFT FOUR PLACES
llE

5 ASLM4
2
7 AS1
6
2
3
7

llE

PSHS
LDA
LSL
ROL
DECA
Bt~E

PULS

A

1, x
0,X

AS1
A,PC

SAVE A
SHIFT COUNT

16-BIT SHIFT

DONE?
AGAIN GO IF NO
RECOVER A, RETURN

llE INST PRINTS START MESSAGE AND COLLECTS
llE A HEX ADDRESS C X): C X+t). ASCII
!IE CR RETURNS, OTHER NON-HEX STARTS OVER.
llE H TRANSFERS CONTROL TO SUBROUTINE MOVE.
llE
!!IE BLOWS A,B

* 2 I NS1 CMPA +'M
6
6 INST
9
9
6
9
3
5

LBEQ
PSHS
LEAX
LBSR
PULS
LBSR
BNE
RTS

MOVE
x
STARTM,PCR ENTER HERE
PDATA
x
INADDR
INS1 AGAIN IFF BAD

HEX .NE. CR

* INFIN PRINTS END MESSAGE AND
!IE COLLECTS A HEX ADDRESS C X): C X+1) .
!IE ASCII CR RETURNS, OTHER NON-HEX STARTS
*- M TRANSFERS CONTROL TO SR MOVE.

llE BLOWS A,B
!IE

2 INF1 CMPA •'M
6 LBEQ MOVE

6 INFIN PSHS
9 LEAX
9 LBSR
6 PULS
9 LBSR
3 BNE
5 RTS

STARTM FCC
FCB

FINM FCC
FCB

x
FINM,PCR ENTER HERE
PD AT A
x
INADDR AGAIN IFF BAD
INFt HEX .NE. CR

/BEGIN:/
fA0
I END:/
IA0

1111

OVER.

AUSTIN,TEXAS--MICROCOMPUTER CAPITAL OF THE WORLD!
M6800-M6809 CROSS-ASSEMBLER 2.2
PAGE 010 MTEST9 PSEUDO-RANDOM MEMORY TEST

00415
00416
00417
00418
00419
00420
00421
00422
00423
00424 061F 34
00425 0621 t7
00426 0624 C6
00427 0626 17
00428 0629 35
00429 0628 17
00430 062E 2B
00431 0630 6F
00432 0832 BF
00433 0634 20
00434 0638 17
00435 0639 28
00436 0838 8D
00437 063D EA
00438 063F E7
00439 0641 20
00440 0643 81
00441 0645 39

00443
00444
00445

10
00A9
02
0007
10
0104
13
84
01
05
00f9
08
99
01
01
f3
0D

00446 0646 30 80 fDB6
00447 064A 34 40
00448 064C EE 59
00449 064E 108E 0380
00450 0652 AS 80
00451 0854 A7 C0
00452 0656 31 3F
00453 0658 26 F8
00454 065A 35 40
00455 065C SE 08 f 9

00457
00458
00459
00460
00461

065F A7
0662 39

08 02

!IE

• INADDR INPUTS HEX ADDRESS FROM KEYBOARD
llE UNTIL NON-HEX. RETURNS NON-HEX IN
• ACCA AND ALSO Z=t [ff CR.
llE LAST 4 CHARS ARE COLLECTED
!IE IN BINARY AT 0,x AND t,x.
!IE

!IE BLOl-.IS A, 8

* 6 INADDR PSHS X
9 LBSR OUT4H
2
9
6
9
3
6
7
3
9 I NA1
3
7 INA3
5
5
3
2 INA2
5

*

LDE •2
LBSR RSPACE
PULS
LESR
BMI
CLR
CLR
BRA
LBSR
BMI
BSR
ORB
STB
BRA
CMPA
RTS

x
IN1H
INAZ
0,x
1,x
INA3
IN1H
INA2
ASLM4
1.x
1, x
INAt
#CR

PRESENT ADDRESS

GET CHAR IN A, HEX IN B
RETURN IFF NOT HEX
INITIALIZE ADDR=0

rs HEX, so ACCUMULATE
GET CHAR IN A, HEX IN B
RETURN [FF NOT HEX
MAKE A PLACE
CATENATE HEX

RETURN Z=1 IFF CR

!IE MOVE RE-POSITIONS MTEST9 TO BEGIN ADDRESS!
llE

9 MOVE
6
6
4
6 M01
6
5
3
6
B

LEAX
PSHS
LOU
LDY
LDA
STA
LEAY
ENE
PULS
JMP

MTEST,PCR
u

START OF MTEST

BEGAD,U MOVE-TO LOCATION
•PGMEND+1-MTEST LENGTH OF MTEST
,X+ GET A BYTE
,u+
-1, y
MOt
u
[BEGAD,UJ

MOVE IT
COUNT IT
BRANCH IF NOT DONE

RE-INITIALIZE EVERYTHING

*
* ll(

OUT SENDS CHAR NOW

9 OUT
5

STA [CIAD,UJ
RTS

•
AUSTIN,TEXAS--MICROCOMPUTER CAPITAL OF THE WORLD!
M6800-M6809 CROSS-ASSEMBLER 2.2
PAGE 011 MTEST9 PSEUDO-RANDOM MEMORY TEST

00464
00465
00466
00467
00468
00469 0663 34
00470 0665 ES
00471 0667 E7
00472 0889 1E
00473 066B 86
00474 066D t7
00475 0670 1E
00476 0672 C4
00477 0674 E7
00478 0676 Ct
00479 0678 26
00480 067A 32
00481 067C 39

00483 067D Ct
00484 067F 26
00485
00486 0681 Et
00487 0683 27
00488 0885 tF
00489 0687 SE

00491 0688 35

00493
00494
00495
00496
00497
00498
00499

00501
00502
00503

0680 AS
0690 At
0693 26
0695 39

00504 0696 34
00505 0698 86
00506 069A A7
00507
00508
00509
00510
005tt
00512 0690 86
005t3 069F A7
00514 06A2 35

04
58
57
89
80
009F
89
7F
58
t8
03
C4

tE
0A

57
06
34
8D FDC8

84

DB 02
DB 02
F8

02
03
DB 04

15
DB 04
82

llE

!IE
!IE
llE

*

CKESC CHECKS FOR ESCAPE OR CONTROL X
ESC RETURNS Z=1 <RESTART MEMTEST)
CTLX =RETURN (JUMP TO MA[D)

5 CKESC PSHS
LDB
STB

B
NUCH,U
OLCH,U

5
5
7
2
9
7
2
5
2
3
4
5

EXG A,B
LDA :tS80
LBSR INCH
EXG A,B
ANDB :tf7F
STB NUCH,U
CMPB :ti:CTLX
ENE Cl<t
LEAS 0,U
RTS

SET UP ...
SOFTWARE EDGE-DETECTOR

GET CHAR NOW
C NO ECHO)

ABORT MTEST9 PACKAGE?
FUNNY TFR U,S
RETURN TO CALLING SYSTEM

2 CK1 CMPB :tESC
0~2

IS THE NEW CHAR ESC?
3 BNE

!IE HERE ACCB
5 CMF'B
3 EEO
6 TFR
8 JMP

7 CK2 PULS

= NUCH =
OLCH,U
CK2
u,s
M0,PCR

B,PC

ESC
THE OLD CHAR ALSO ESC?
RESTART IFF FIRST ESC CHAR
ABSOLUTES REMAIN
FUNl..iY LBRA M0

RETURN NO ACTION

GCH GETS PRESENT CHAR INTO ACCA

* 9 GCH
9
3
5

llE

LDA
CMPA
BNE
RTS

tCIAD,UJ GET THE CHAR NOW!
tCIAD,UJ STILL THE SAME?
GCH IF NOT, GO AGAIN

llE INITrALIZE ACIA

* 5 INITAC PSHS A
2
9

LDA
STA

*3 RESET ACIA

2
9
7

tCIAC,UJ

x x x x x x 0 1
x x x 1 0 1 x x
0 0 0 x x x x x

LDA +%00010101
STA tCIAC,UJ
PULS A,PC

DIVIDE BY tS
8 DATA + 1 STOP
READER OFF, BOTH

INTERRUPTS DISABLED

AUSTIN,TEXAS--MICROCOMPUTER CAPITAL OF THE WORLD!
M6800-M6809 CROSS-ASSEMBLER 2.2
PAGE 012 MTEST9 PSEUDO-RANDOM MEMORY TEST

00517
00518
00519
00520
00521
00522
00523 06A4 BA
00524 06A6 6D
00525 08A8 27
00528 06AA 6E
00527 06AD 34
00528 06AF E6
00529 0882 C4
00530 0684 27
00531 0686 A7
00532 0689 17
00533 06BC 35

00535
00536
00537
00538
00539
00540
00541
00542
00543 06BE 44
00544 06BF 44
00545 06C0 44
00546 06C1 44
00547 06C2 84
00548 08C4 88
00549 08C6 81
00550 06C8 23
00551 06CA BB
00552 06CC 39

00554
00555
00558
012'557
00558
00559
00560
00581
00562
00563
00564
00565
00566
00567
00588

06CD BD
06CF A6
06D1 34
08D3 80
0605 17
0608 35
06DA f!.D
06DC 16

80
46
03
DB 02
04
08 04
02
F9
D8 02
FFA7
84

0F
30
39
02
07

00
80
02
E9
FFCC
02
E6
FFC5

!IE

* OUTCH ~AITS TILL ACIA IS READY
llE THEN SENDS A TO ACIA
llE
!IE

llE
2 OUTCH
7
3
8
5 OUTC2
9 OUTC1
2
3
9
9
7

*

CHANGES A

ORA
TST
BEO
JMP
PSHS
LDB
ANDB
BEQ
STA
LBSR
PULS

MODE.U
OUTC2

DONT SEND MSB

(OUTSUB,UJ ALTERNATE I/O
B SAVE B IN STACK
[CIAC,UJ AClA CONTROL
•2 CHECK XMlT STATUS
OUTC1 LOOP lF XMIT NOT READY
[ClAD,UJ ACIA DATA
CKE SC

RECOVER B, RETURN

llE CHEXL MAKES LEFT NYBBLE ACCA
W. ASCII HEX
!IE CHEXR MAKES RIGHT NYBBLE ACCA
llE ASCII HEX

* llE

*
2 CHEXL
2
2
2
2 CHEXR
2
2
3
2
5 CHEX1

llE

BLOWS A

LSRA
LSRA
LSRA
LSRA
ANDA :tf F
ADDA •f.30
CMPA :t'9
BLS CHEX1
ADDA #7
RTS

LEFT NYBBLE BECOMES RIGHT

RIGHT NYBBLE ONLY
OFFSET TO ASCII 0
LARGER THAN ASCII 9?

ADDITlONAL OFFSET TO ASCII A-

llE OUT4H DOES OUTZH TWICE
llE OUTZH SENDS C IX) AS
llE 2 ASCII HEX CHARS.
llE

*
*

7 OUT4H
6 OUT2H
5
7
9
5
7
5

BLOWS A, MOVES X

BSR OUT2H
LDA , X+
PSHS A
BSR CHEXL
LBSR OUTCH
PULS A
BSR CHEXR
LBRA OUTCH

2H X 2 = 4H

SAVE A
GET MS BYTE
SEND IT

GET LS BYTE
SEND IT

•
AUSTIN,TEXAS--MICROCOMPUTER CAPITAL OF THE WORLD!
M6800-M6809 CROSS-ASSEMBLER 2.2
PAGE 013 MTEST9 PSEUDO-RANDOM MEMORY TEST

00571
00572
00573
00574
00575 06DF 80
00576

00578
00579
00580 06E1 34
00581 06E3 A6
00582 06ES 17
00583 06E8 60
00584 06EA 2A
00585 06EC 35

00587
00588
00589
00590
00591
00592

06EE 34
06F0 30
08F4 8D
06F6 35

00594 06F8
00595 06FA

00597
00598
00599
00600
00601
00602
00603
00604 06FE CS
00605 0700 86
00806 0702 17
00807 0705 SA
00808 0706 26
00609 0708 39
00610
00811
00612
00613 0709 4F
00614 070A 80
00615 070C 84
00616 070E 39

00

12
84
FFBC
80
F7
92

10
8D 0004
EB
90

000A
00

01
20
FF9F

FA

03
7F

•
llE PDATA PRINTS CRLF, TEXT STRING
!IE C IX > IS START
llE 87 = 1 rs LAST CHAR PRINTED

7 PDATA BSR PCRLF
!IE FALL INTO PDATA1

* !IE PDATA1 PRINTS TEXT
7 PDATA1 PSHS A,X
4 PD1 LOA ,X
9 LBSR OUTCH
8
3
9

llE

TST ,X+
BPL PDt
PULS A,X,PC

STRING
SAVE STATE
GET A CHAR
SEND IT
TEST MSB
ANOTHER CHAR IF 87=0
RECOVER STATE, RETURN

!IE PRINT CRLF
6 PCRLF PSHS X SAVE PRESENT X
9 LEAX
7 BSR
8 PULS

TCRLF FOB
FCB

*

TCRLF,PCR POINT AT CRLF TEXT
PDATA1 PRINT IT
X,PC RECOVER STATE, RETURN

CRLF
0,,, $80

!IE PSPACE PRINTS ONE SPACE
!IE RSPACE PRINTS B SPACES
llE REPEAT PRINTS ACCA, B TIMES

llE THESE ALL BLOW A,B

*
2 PSPACE LOB
2 RSPACE LOA
9 REPEAT LBSR
2 DECB
3
5

BNE
RTS

REPEAT

SET COUNT TO 1
LOAD A WITH ASCII SPACE
fZ'RINT ACCA
DONE?
LOOP TILL DONE
RETURN

llE [NCHNP GETS A CHAR CNO PARITY)
llE

2 INCHNP CLRA
7 BSR INCH
2 ANDA +S7F
5 RTS

SET UP ECHO, WAIT FOR CHAR
GET BYTE FROM ACIA
CLEAR BIT7

1111

-
AUSTIN.TEXAS--MICROCOMPUTER CAPITAL OF THE WORLD!
M6800-M6809 CROSS-ASSEMBLER 2.2
PAGE 014 MTEST9 PSEUDO-RANDOM MEMORY TEST

00619 llE

00620 llE INCH RETURNS CHAR IN ACCA.
00621 llE ECHOS IFF OLD ACCA=0.
00622 !ti WAITS FOR CHAR IFF OLD ACCA !!:7=0
00623 !II:
00624 070F 6D 46 7 INCH TST MODE,U
00625 0711 27 03 3 BEQ INCH3
00626 0713 6E DB 04 8 ,,.IMP [INSUB,UJ
00627 0716 4D 2 INCH3 TSTA
00628 0717 2A 03 3 BF'L INCH4
00629 0719 16 FF7t 5 LBRA GCH
00630 071C 34 02 5 INCH4 PSHA
00631 071E A6 DB 04 9 INCH1 LDA tCIAC,UJ ACIA STATUS
00632 !IE IFF DATA READY, B0=1
00633 0721 44 2 LSRA B0 INTO CARRY
00634 0722 24 FA 3 BCC 1NCH1
00635 0724 AS E0 6 LDA ,s+ SNEAKY PULL
00636 0726 26 08 3 BNE INCH2 SHALL WE ECHO?
00637 0728 AS DB 02 9 LDA tClAD,UJ
00638 072B 16 FF76 5 LERA OUTCH

00640 072E A6 DB 02 9 INCH2 LDA tCIAD,UJ DATA INTO ACCA
00641 0731 39 5 RTS

00643 llE
00644 llE IN1H WAlTS FOR NEW CHAR FROM ACIA IN ACCA,
00645 * THEN TRANSLATES CHAR TO HEX IN ACCB.
00646 !IE 1N11-1 RETURNS NEG IFF NOT HEX.
00647 llE
00648 0732 BD D5 7 IN1H BSR INCHNF' 1-JA [T FOR CHAR AND ECHO
00649 0734 1F 89 6 TFR A,B
00650 0736 17 FF2A 9 LBSR CKE SC
00651 * 00652 llE CHECK AND CONVERT FOR VALID HEX CHAR
00653 0739 Ct 30 2 CMPINF' CMF'E :t, 0
00654 0738 25 11 3 BLO INBAD BAD IF UNDER ASCII 0
00655 073D Ct 39 2 CMPB • , 9
00856 073F 23 0A 3 ELS INGD GOOD IF 0-9
00657 0741 Ct 41 2 CMPB :t'A
00658 0743 25 09 3 BLO I NEAD BAD IF BETl-JEEN 9,A
00859 0745 Ct 48 2 CMPE •'F
00860 0747 22 05 3 EHI INBAD BAD IF OVER F
00681 0749 C0 07 2 SUBB #7 LETTERS TO BINARY
00662 0748 C4 0F 2 INGD ANDB •SF RETURN POS IFF GOOD
00863 074D 38 5 RTS
00664 074E 1A 08 3 I NEAD ORCC :tN RETURN NEG IFF BAD
00665 0750 39 5 RTS

•

AUSTIN,TEXAS--MICROCOMPUTER CAPITAL OF THE WORLD!
MS800-M6809 CROSS-ASSEMBLER 2.2
PAGE 015 MTEST9 PSEUDO-RANDOM MEMORY TEST

00668 !I

00669 !IE PRINTlX PRINTS THE VALUE IN X
00670 llE AS 4 HEX DIGITS
00671 llE
00672 0751 34 10 6 PRNTIX PSHS x SAVE X
00673 0753 H" 41 6 TFR s,x POINT AT SAVED X
9~~74 0755 17 Ff75 9 LBSR OUT4H PRINT IT
,.,75 0758 3S 90 8 PULS X,PC RECOVER X, RETURN.

••677 llE

•••7~ !IE VERPGM VERIFYS PROGRAM CORRECTNESS BY
t•G7 . !IE COMPUTING PARITY OVER ENTIRE PGM
00681 !IE CPGM HAS BEEN MADE ODD PARITY>
00681 !IE

00se.2 07SA 30 80 002E 9 VERPGM LEAX PGMEND,PCR LAST ADDRESS
006e.3 075E 34 10 6 PSHS x C PAR I TY BYTE>
90684 0760 30 80 FC9C 9 LEAX MTEST,PCR
00685 0764 4f 2 CLRA
1068S 0765 A8 80 6 VER1 EORA ,x+
00687 0767 AC E4 6 CMPX 0,S DONE?
tH688 0769 23 FA 3 BLS VER1
10689 0768 32 62 5 LEAS 2,S CLEAN UP STACK
09690 0760 4C 2 INCA ODD PARITY NOW 0'S
10691 076E 27 09 3 BEQ VER2 NORMAL RETURN
106S2 0770 30 8D 0006 9 LEAX VERMSG,PCR
00693 0774 17 fF68 9 LBSR PD AT A
00694 0777 1f 34 6 TFR u,s RETURN TO MAIN SYSTEM
80695 0779 39 5 VER2 RTS

106~'7 077A 49 VERMSG FCC /INVALID PGM LOAD!/
00698 0788 A0 FCB IA0

10700 07SC 93 PGMEND FCB 193 ODD PARITY BYTE

AUSTIN,TEXAS--MICROCOMPUTER CAPITAL OF THE WORLD!
M6800-M680S CROSS-ASSEMBLER 2.2
PAGE 016 MTEST9 PSEUDO-RANDOM MEMORY TEST

00702 0000

TOTAL ERRORS 00000
TOTAL WARNINGS 00000

END

- ..

7.0 PROGRAMMING TRICKS 'N TREATS

7 . 1 INSTRUCTION EQUIVALENTS

JMP 0,X = TFR X,PC

= PSHS x
PULS PC

= PSHS x
RTS

LBRA CAT = JMP CAT,PCR

LBRA *+5 = JMP 2,PC

LBSR DOG = JSR DOG,PCR

LOX #PIG ::: LEAX PIG,PCR
t t

the loaded value will not the loaded value will
change when executed in change when executed in
different locations different locations

PSHS A STA ,-s
(shorter) (affects flags)
PULS A LOA ,S+
(shorter) (affects flags)
RTI ::: PULS ALL

= TST 0,S
BMI RAT
PULS CC,PC

RAT PULS ALL

...
•

7. 1 (Con t i n u. e d)

RTS = PULS PC

SEX = CLRA
TSTB
BPL cow
OECA

cow EQU *

= CLRA
TSTB
BPL BULL
COMA

BULL EQU *

= PSHS x
LOX #0
LEAX B,X
TFR X,0
PULS x

SWI ::: PSHS ALL
JMP [$FFF8]

= PSHS ALL
LOX POSUM,PCR
STX 1 0 's
JMP [$FFF8]

POSUM EQU *
TFR Y,X = LEAX 0,Y

(shorter, may affect flags)

•

7. 2 COMPATIBLE MACROS

7.2.1 Monadic:

ASLD =

TSTA

CLRD =

CLRX =

DBNE MOOSE =

DDBN MOUSE =

DECO :::

ROACH

:::

~

DEl

DE2

ASLB
ROLA

CLC

LDD

LOX

DECB
BNE

DECB
BNE
DECA
BNE

TSTB
BNE
DECA
DECB

EXG
LEAX
EXG

TSTB
BNE
DECA
DECB
BNE
TSTA
EQU

..

,-

#0

#0

MOOSE

MOUSE

MOUSE

ROACH

D,X

- 1 'x
D,X

DEl

DE2

*

--------------- -------

7. 2. l (Continued)

!NCO ::: INCB
BNE COON
INCA

COON EQU *

., EXG 0,X
LEAX l 'x
EXG 0,X

JMP [[O,X]] .. BRA OBLINO

OBLINO LOX o,x
LOX o,x
JMP o,x

LOOP #VALU = EXG A,OP
LOA #VALU
EXG A,OP

LOPC CHICK = JMP [CHICK]

LEA PC EEL = JMP EEL

LSRO .. LSRA
RORB

• 1111

7. 2 . l (Continued)

NEGD COMA
NEGB
ADCA #0

::; COMA
COMB
ADDO #1

= STD BEE
COM BEE
COM BEE+l
INC BEE+l
BNE BONNET
INC BEE

BONNET BVS ERR
LOO BEE

NEGX = EXG D,X
COMA
COMB
ADDO #1
EXG D,X

STOP DILLO = EXG A,DP
STA DILLO
EXG A,DP

TGC (toggle carry) = c EQU $01
PSHS A
TFR CC,A
EORA #C
TFR A,CC
PULS A

...
•

7. 2. l (Continued)

TGC = c EQU $01

NOTC EQU $FE
BCC TOAD
AN DCC #NOTC
BRA FROG

TOAD ORCC #C
FROG EQU *

7 . 2 . 2 Dyadic:

ADDB A = PSHS A

(B+B+A) ADDB ,S+

ADDO x r ADDO O,X
(D+D+X) "! ADDO ,x

= PSHS x
ADDO ,S++

ADDX D = LEAX D,X
(X+X+D)

ADDX y ADDX 'y
(X+X+Y)

= EXG D,Y
LEAX D,X
EXG D,Y

ANDA B = PSHS B
(A+A A B) ANDA ,S+

ANDB A = PSHS A
(B+B A A) ANDB ,S+

• ...

7. 2. 2 (Continued)

BITA B = PSHS B
(TEMP+A A B) BITA 'S+

CMPA B = PSHS B
(TEMP+A-B) CMPA ,S+

CMPB A = PSHS A
(TEMP+B-A) CMPB ,S+

CMPX y PSHS y

(TEMP+X-Y) CMPX ,S++

EXG A,X = PSHS A,B
TFR X,D

(A+XH) PULS A
(X+A:XL) TFR D,X

PULS B

EXG B,X = PSHS A
PSHS B

(B+XL) TFR X,D
(X+XH:B) PULS B

TFR D,X
PULS A

JMP X,PC ::: TFR PC,D
LEAX D,X

(PC+PC+X) TFR X,PC
(destroys D,X)

7. 2. 2 (Continued)

LDDP #ADDR = EXG A,DP
LOA #ADDR
EXG A,DP

LEAD sow,x = EXG X,D
LEAX sow,x

(D+EA,EA=X+SOW) EXG X,D

LEAP GUPPY,X = PSHS X,PC
LEAX GUPPY,X

(PC+EA,EA=X+GUPPY) STX 2,S
PULS X,PC

SUBD x SUBD ,x
(D+D-X)

= PSHS x
SUBD ,S++

SUBX D = PSHS D

(X+X-D) COMA
COMB
ADDO #1
LEAX D,X
PULS D

•

7.2.2 (Continued)

SUBX y SUBX ,Y
(X+X-Y)

= PSHS D
TFR Y,D
COMA
COMB
ADDO #1

LEAX D,X
PULS D

TFR A,X = PSHS x
(X+A:XL) STA o,s

PULS x

TFR B,X = PSHS x
(X+XH:B) STB l 's

PULS x

7.3 PROGRAM FLOW MANIPULATIONS

RTO

error return
(return to a different location if error--return
with offset)

= PSHS D
LDD 2,S
ADDO #OFFSET
STD 2,S
PULS D,PC

= PSHS x
LOX 2,S
LEAX OFFSET,X
STX 2,S
PULS X,PC

::: PULS x
JMP OFFSET,X

::: INC 1 's
BNE ANT

(if offset = 2) INC o,s
ANT INC 1 's

BNE EATER
INC o,s

EATER RTS

•

7. 3 (Continued)

pass parameters in-line

(destroys X) LEAX RTN,PCR
PSHS x
LBRA SUB
FCB MOO
FCB MEOW
FCB CRUNCH

RTN EQU *

alternately

LBSR SUB
BRA NXT
FCB 0 INK
FCB WOOF
FCB SQUEEK

NXT EQU *

pass parameters on stack

(destroys X,A) LOX
LOA
PSHS
LBSR
LEAS

#CRT
#TYPE
X,A
SUB2
3,S

..

•

7.3 (Continued)
subroutine skips past in-line arguments after
operating - system "interrupt"

~/A Yl LOX
LEAX
STX
PULS

WAY2 LOX
LEAX
STX
RTI

alternate forms

PSHS

?
these are PULS
deceptively
incorrect

PSHS

~
RTS

this is an BSR
in-line ?
subroutine~ RTS

BSR
BRA

~
RTS

7,S RETURN PC
B,X COMPUTED OFFSET
7,S
ALL

7 's RETURN PC
OFFSET,X FIXED OFFSET
7,S

for loop

PC

PC

PC

*+2

*+4

*-2

construction

•

7. 3 (Continued)

pass parameters in-line

(destroys X) LEAX RTN,PCR
PSHS x
LBRA SUB
FCB MOO
FCB MEOW
FCB CRUNCH

RTN EQU *

alternately

LBSR SUB
BRA NXT
FCB OINK
FCB WOOF
FCB SQUEEK

NXT EQU *

pass parameters on stack

(destroys X,A) LOX #CRT
LOA #TYPE
PSHS X,A
LBSR SUB2
LEAS 3,S

•

7.4 PROGRAMMING HINTS: Wise And Other Whys

Go to co-routine

Call operating system

double exchange top-of-stack

ACCO exchange top-of-stack

point to PC-relative table

add top top bytes on stack and

push result

exchange PC with top-of-stack

=

=

:::

:::

=

=

=

=

EXG X,PC

SWI
FCB SQUID
FCB WHALE

1
FCB GNAT

LOO 2,S
LOX O,S
STX 2,S
STD O,S

LOX o,s
STD O,S
TFR X,D

LEAX

LEAX

LOA
.l\DDA

21 'pc

CAT,PCR

,S+

's
STA ,S

JSR [,S++J

...

7.5 REFRESHMENTS

D'1" .. "''t

E&V ..$.10

?TM
-r;,i ,t ... J -~

F.:C~c:\

PA-~&

p itr<\ E To 0 """ ... I~"""''+
Ae...J/c .. J

,3 .,.~ 41c. l>'1"'·"'·1(.J
11. 7 ~,_ 1' k 11

-

•

7 . 6

1 .

SOFTWARE DOCUMENTATION STANDARDS FOR 6809

Each subroutine should have an associated header block
containing at least the following elements:

a) A full specification for this subroutine - including
associated data structures - such that from this des­
cription alone replacement code can be generated.

b) All usage of memory resources must be defined, including:

i) All RAM needed from Temporary (local) storage
used during execution of this subroutine or
called subroutines).

ii) All RAM needed for Permanent storage (used to
transfer values from one execution of the sub­
routine to future executions).

iii) All RAM accessed as Global Storage (used to trans­
fer values from or to higher-level subroutines).

iv) All possible exit-state conditions, if these are
to be used by calling routines to test occurrences
internal to the subroutine.

2. Code internal to each subroutine should have sufficient assoc­
iated line-comments to help in understanding the code.

3. All code must be non-self-modifying and position-independent.

4. Each subroutine which includes a loop must be separately
documented by flow-chart.

5. The main program should be executable starting at the first
location and should include an I/O jump table immediately
thereafter.

6. When any single routine begins to approach the length of
one listing page, it becomes candidate for further subroutining.

-

7.7 ADDITIONAL TRICKS 'N TREATS

7. 7. 1 Instruction Equivalents

LEAX ,--X = LEAX - 2, x

LEAX ' - -y = LEAY -2,Y
TFR Y,X

LEAX ,X++ = LEAX 2 'x

LEAX ,Y++ = TFR y 'x
LEAX 2,X

NOP = TFR x,x
= LEAX o,x

7.7.2 Monadic Compatible Macros

ABSA = TSTA
BPL ABl
NEGA

A Bl EQU *

AAX = EXG A,B
ABX
EXG A,B

NEGA
NEGB
SBCA #0

•

-

ift... .. /

@ MOTOROLA Semiconductor Products Inc.
'O 3501 ED BLUESTEIN BLVD., AUSTIN, TEXAS 78721 •A SUBSIDIARY OF MOTOROLA INC.

13157PRINTEDil1USA 10-79 IMPERIALLITHOB82406

