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FOREWORD

This Preliminary programming manual was excerpted from
the system design specification for the M6809 and as

such occasionally betrays its origin. It is, however,
complete and correct and contains all the information
necessary to construct a M6809 system and to write the
software for that system. References made in this man-
ual to the MC6801 also apply to the MC6803, and re-
ferences the MC6802 also apply to the MC6808.

When a discrepancy is found between this preliminary
manual and the MC6809 Advance Information Data Sheet,
the data sheet takes precedence.

Further details pertaining to the assembly language syn-
tax and M6809 assembler operation can be found in "Macro
Assemblers Reference Manual", part no. M68MASR(D).
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1.

OVERVIEW

The 6809 is an 8-bit NMOS microprocessor designed with
particular attention to real-time programming and char-
acter-manipulation data processing. It is compatible
with the 6800 microprocessor bus and family parts, and
is capable of superior computing performance.

Even people who have not previously used the 6800 will
find the 6809 a serious contender for their microprocessor
business. The consistent and powerful instruction set
makes our computer easy -- and even fun! -- to program.
The enhanced architecture allows programming techniques
that reduce the risk and increase the 1ife of the pro-
gramming investment. The resultant programs are fast and
efficient. And, since our machine is byte-oriented (as
opposed to 16-bit) it is best at processing byte gquantities
-- exactly the facility required for High-Level-Language
and business data-manipulation.

People who have used the 6800 will find the 6809 very
familiar and easy-to-learn. For example: the 6800 had
one stack pointer; now the 6809 has two stack pointers,
and a single instruction can push a register, a couple
of registers, or the entire machine state (all visible
registers) onto the stack. Another example: the 6800
had one index register; now the 6809 has two index
registers. And both stack pointers are indexable. And
so is the program counter. So the 6809 is not different
from the 6800, just tremendously more capable.
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DESIGN TARGET

The principal thrust for the design of the 6809 MPU
was to create a processor which would improve our

position in present markets, and the vast consumer

markets still to come. We expect that markets such

as Business Accounting, Word Processing, Scientific/

Business Programming, Medical Analysis, Communications
Switching, etc., will find the 6809 an optimal choice.

1.

1

1.

1

Results of 6800 Analysis

Extensive analysis of difficulties in using the
6800 brought out a number of more-specific design
goals for the 6809. These ranged from rather
obvious improvements (like "greater throughput,"
"more registers," and "PUSH X") through those
typical of professional architectural design
("consistancy," and "powerful addressing") to
innovative attempts to crack the problem of
expensive software ("position-independence,”

and "indirect addressing for I/0"). Next, we
examine some of the ramifications of these
improvements.

Hardware Improvements

A number of hardware difficulties are resolved
from the original 6800 system: R/C RESET, on-
chip clocks, and improved bus-timing specs

make the system easier to use and easier to

run faster. Extensive analysis of the inter-
action between various control/response signals
(interrupts, HALT, BA, RESET, IACK, etc.)has the
new signals (READY) work with the old to handle
multiple-processor and other new applications.
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Throughput Improvements

The 6809 can provide a radical throughput improve-
ment that qualifies it for a number of tasks
previously unsuited to microprocessors. The en-
hanced architecture (additional index registers
and stack pointers) and greatly-expanded address-
ing capabilities simplify algorithms and program-
ming while speeding processing. New instructions
and better bus-timing give us an even more power-
ful machine. And "optimizing" code using the

new Direct Page Register can further increase
speed and reduce program size.

But no matter how fast the machine goes,

there will always be some application just out

of reach, and it will always be "nice" to have

the same job done in half the time. Many systems
will use multiple processors for just this reason.
But the fact of the matter is, once any machine
can do your job in the time you require, through-
put has ceased to be important. It is more impor-
tant that the machine be easy to use and easy to
program. The hardware designer can verify
his work -- each system signal, if necessary --

by experiment. Not so the software designer, who
can easily build systems that would take longer

to exhaustively test than there has so far been
life on Earth.
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Software Improvements

Some things which facilitate program correctness
are: Block Structure, High-Level-Language; and,
at the machine level, a regular architecture,
consistent instruction-set and logical assembly
lTanguage. We have made a conscious attempt to
minimize the number of assembly-language mnemonics,
and to make those which remain apply consistently,
both functionally and syntactically, to similar
registers. We have nevertheless added some
redundant mnemonics (LSL, BHS, BLO, BRN) to

fi1l out particular instruction types, making
them easy to remember and available for compiler-
produced code.

Architectural Improvements

Perhaps the most powerful improvement we have
made was to greatly expand the 6809's addressing
capabilities over the 6800. Let's talk a little
about "state-information". The true description
of the state of a computer program includes the
description of every bit in both the memory and
the CPU. Compared to the memory environment in
which it processes data, even register-oriented
computers have a very limited amount of program
state information available internally. By
vastly-expanding the addressing modes, and mak-
ing each apply to any of the four pointer re-
gisters, we orient the machine to saving most
program state information in memory, where there
is plenty of space, as opposed to in the CPU
itself where it is very expensive. |
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1.1.6.1

1.

1.

(Continued)

Some CPU designers have gone even further, effect-
ively placing their registers in memory, on the
assumption that if a little of something is good,
a lot is better. These machines must fetch data
from memory, operate on it, then put it back -

and they are inevitably slower.

Innovative Improvements

Perhaps most intriguing from an architectural
point of view,

are the features
we included to attack the problem of high-cost
software. While microprocessor-family sales
would seem to be a business capable of exponential
expansion, vast applications markets are still
closed due to the unavailability of quality soft-
ware. And the software is unavailable because

of its high development costs and very low security.

ROM's For Low-Cost Software

One attack on reducing development costs is to
move the results into massproduction -- in this
case, Read-Only-Memories. But ROM's are risky;
if the software is not carefully designed, it
will only apply to one system -- a custom product
at custom economics. And a single software error
could conceivably require that every unit in the

field be recalled; the risk of software error
cannot be amortized over the number of units
produced.
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(Continued)

The error problem will always require very
careful modular testing, but by insisting on

a regular architecture and logical assembly
language, that risk is noticeably reduced.

The problem of making the ROM applicable to
large numbers of arbitrary hardware designs
requires a solution to the problem of Position-
Independent-Code (PIC).

Position Independence

By Position-Independent we mean that the exact
same machine-language code can be placed any-
where in memory and still function correctly
(PIC is also called "self-relative" code). The
6800 has a limited form of position-independent
control-transfer in its branch instructions, and
we have added long branches to complete this
capability. But that is only part of the prob-
lem: it is also crucial that RAM storage for
global, permanent, and temporary values be

easily available in a position-independent manner.
We suggest placing this data on the stack, since
the stacked data is exceedingly easy to access
and manipulate. It is suitable to stack the
absolute addresses of I/0 devices before calling
a standard software package, and the package can
use the stacked addresses for I/0 in any system.

It is also necessary to be able to gain access to
tables or data or immediate values in the text
of the program; the LEA instructions allow the
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(Continued)

user to point at data in a position-independent
manner, as, for example:

f

LEAX MSG1,PCR
LBSR PDATA

§

/ PRINT THIS!/

Here we wish to point at a message to be printed
from the body of the program. By writing "MSGI,
PCR" we signal the assembler to compute the
distance between the present address (the address
of the LBSR) and MSG1. This result is inserted
as a constant into the LEA instruction which

will be indexed from the program counter value

at the time of execution. Now, no matter where
the code is located, when it is executed the
computed offset from the program counter will
point at MSG1. This code is position-independent.

Summary

In short, the 6809 microprocessor will provide the
user with greatly-improved performance, reduced
system-complexity, and radically new capabilities.
Its innovative features will allow deep inroads to
be made in quality low-cost programs.
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SUMMARY OF FEATURES

1.2.1 Hardware

o 0O o o o o o o

8-Bit Data / 16-Bit Address Bus
MC6800 Bus Compatible

Single 5v Supply / 40 pins

TTL - Compatible

Fast Interrupt Request Input

Interrupts may be Vectored by Device
Two Status Outputs (BA and BS)

On-Chip Clock Version 4 x f

0
MRDY input for slow memory

DMA/BREQ input for DMA

1.2.2 Software

0

MC6800 Upward-Compatible Architecture

Two 8-Bit Accumulators

Two 16-Bit Index Registers

Two 16-Bit Stack Pointers (with index capability)
Programmable Direct Page Register

MC6800 Upward-Compatible Instruction-Set

59 Instruction Mnemonics

268 Opcodes

1464 Instructions w/different addressing modes
8x8 Unsigned Multiply

16-Bit Arithmetic (Load, Store, Add, Subtract,Compare
Powerful Push/Pull Instructions

Powerful Register Transfers and Exchanges
Powerful Address-Manipulation Instructions
Extended-Range Long Branches
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(Continued)

° MC6800 Upward-Compatible Addressing

10 Addressing Modes

24 Indexed Sub-modes

Indexing Applied From Either Index Register
or Either Stack Pointer

Constant Indexing From PC

Indirect Addressing (Post-Indirection)

Up to 16-Bit Indexed Offsets

Auto-Increment/Decrement

e Fully-Supports Various Software Disciplines

Position-Independent Code
Non-Self-Modifying Code

Structured, Highly-Subroutined Code
Multi-Task and Multi-Processor Organization
Stack-Oriented Compiler Instructions
Re-Entrancy and Recursion



2.0 CHIP ARCHITECTURE

2.1

6809 BLOCK DIAGRAM
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2 2 Pin Description

2.2.1 Signals of the 6809

16

Power
Address Bus
Data Bus

R/W

XTAL 4x £0
EXTAL only

MRDY
E out

Q out
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Power (Vss, Vdd)
Two pins are used to supply power to the part:

Vgg is ground or Ov, while Vy4 is +5.0v £5%.

Clock (XTAL, EXTAL, E, Q, DMAlrec , MROY )

The pins XTAL and EXTAL are used to connect the
on-chip oscillator to an external parallel-resonant
crystal; this oscillator may take as long as

20 msec to become operational after power-on.
Alternately, the pin EXTAL may be used as a TTL-
level input for external timing; the crystal

frequency or external input is 4x the bus frequency.

E is the standard 6800-bus system timing signal.

The leading edge of E indicates to memory and
peripherals that the address is (should be) suffi-
ciently set-up to begin with operations (EAQ is the
address set-up time for peripherals). Data flows

on the data bus during E and is latched on the

trailing edge of E.

Q is a quadrature clock signal which leads E and
which has no parallel on the 6800. Addresses from
the MPU will be guaranteed good with the leading

edge of Q.



(Continued)

DMAJBReQ is a

request to temporarily suspend MPU operation and take
the MPU off of the MOS bus. A DMAJmRea is always accepted
"immediately'" (at the end of the next E) to insure

a maximum asynchronous latency of one bus cycle
(although the system bus will typically require

a "dead" cycle before beginning an actual transfer).

The user may decode the bus grant state

(BA o BA one-half-cycle-delayed) to place the
DMA device on the MPU buses; this will be
appropriate timing so as to eliminate bus
contention both into and out of DMA. The MPU
has an internal counter which will periodically
switch the MPU back onto the bus, execute one
cycle, then return to DMA operation. This
automatic MPU refresh allows DMA operations of

arbitrary length.

MRDY ~ Memory Ready

is designed to extend the
required data access time for use with slow memory
(it does not increase address set-up time).
is also designed to extend a memory access until a
multi-processor shared-memory can respond to the

access request.
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When a memory-access is to be extended, MRDY should
be LOW some setup time before the trailing-edge of

E of that access cycle; the clocks will then be

held in the EAQ state. After MRDY is made HIGH,
up to one-quarter bus cycle will elapse before

the memory access is completed (at the trailing-edge
of E). WMRDY can only extend the memory access to
10 microseconds for the standard part (a 100 micro-
second extension capability may be available as a

selected version at increased cost).

Address Bus (A0 - Al5)

Sixteen pins are used to place information from the
MPU onto the address bus. Each pin will drive one
standard TTL load (or four LS loads) plus eight
6800-family devices at rated bus speed. Additional
MOS devices may be driven by eliminating the TTL
load, or by reducing the bus rates. All address
drivers are made high-impedence when output BA is
HIGH. The address pins may start to change an
address hold-time after the trailing edge of E, and

they will be stable with the leading edge of Q.
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(Continued)

When the processor does not need to use the bus for
a data transfer it will send address FFFF, ¢ and

R/W = 1; this will replace the VMA function on the
6800. This dummy access may be differentiated from
a RESET by not being acknowledged as an interrupt;
i.e., the dummy access will have a BAABS status,
while RESET vector fetch will have BAABS. It is
recommended that the user not otherwise read access

location FFFF when decoding FFFF as non-VMA.

16 16

Data Bus (D@ - D7)

Eight pins provide communication with the bi-direc-
tional data bus. Each pin will drive one standard
TTL load plus eight 6800-family devices at rated
bus speed. All data bus drivers are made high
impedence when the BA output is HIGH. The period
EAQ is used to tri-state the data bus to allow data
bus turnaround without contention. The MPU will
start to propagate data to the data bus with the
leading edge of Q, but peripherals generally pro-
pagate data only during E. All data receivers
require data to be valid some set-up time before

E goes LOW, when data is latched in the receiving

device.
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Read/Write (R/W)

One output pin indicates the direction of data
transfer on the data bus; a LOW level on this
line indicates that the MPU is sending data on
the data bus. R/W is made high-impedance when
the output BA is HIGH. R/W is good with the

leading edge of Q, the same as the address bus.

Reset (RESET)

A LOW-level on this Schmitt-trigger input (for at
least one cycfgjiﬁeset the MPU. The MPU will take
5 bus cycles for a complete Reset; this will abort
the present instruction, jam ﬂﬂ16 into the Direct
Page Register, set the F and I mask bits in the
Condition Code Register, and disable the NMI (until

after the first load into the stack pointer).

Assuming that neither the HALT nor the DMA/BR&@ pins are

LOW, the MPU will begin operation immediately after

RESET goes HIGH. The MPU will read data from locations
FFFEl6 and FFFF16, then use this data as the address

of the first opcode to be executed.

Because RESET on the MPU is a Schmitt-trigger input

which needs a higher '1' level than is required by

the peripherals, a simple RC network can be used to
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(Continued)

Reset the entire system. The peripherals will be
fully out of Reset before the MPU can start operation
and therefore before the MPU can attempt peripheral
initialization.

During initial power-on, the RESET line should be
held LOW until the clock oscillator is fully oper-

ational, and only then released.

If the HALT or PMATBRE® pins are LOW when RESET returns
to a HIGH level, the RESET positive-edge will be
latched. The MPU will then wait until resumption of
a Running state before completing the Reset. The

MPU will not come out of tri-state during HALT or

DMA even if RESET.

Since DMA operation may occur during RESET, DMA or
MRDY may lengthen the total bus transaction period.
A full Reset will take, therefore, correspondingly

longer in terms of real time.

Halt (HALT, BA, BS)

A LOW level on the HALT input causes a running MPU
to halt at the end of the present instruction, and
remain halted indefinitely without loss of data,

until the HALT pin is driven HIGH. When the MPU is
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(Continued)

halted, the BA output is driven HIGH (which indicates)
that the buses are tri-stated) and BS is driven HIGH
to indicate a HALT or DMA state. While halted, the
MPU cannot respond to some real-time requests although
a DMAJsrea will always be accepted, and NMI 6r RESET
will be latched for later response. Conversely,

if the MPU is not running (PMAJBRe@ or RESET) the HALT
state will not be achieved until the MPU is released

with HALT LOW.

BA (Bus Available) is an indication of an internal
control signal which tri-states the MOS buses(address,
data, R/W) on the MPU. This is a valuable signal for
any form of bus-sharing or DMA, but does not imply
that the bus will be available for more than one
cycle. When BA transitions from a HIGH to a LOW
state, an additional cycle will always elapse

before the MPU regains the bus.

BS (Bus State) is an encoded pin which, in conjunction

with BA, indicates the present MPU state.

Status indications are valid with the leading edge

of Q.
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BA BS MPU_ STATE
0 0 Normal (Running)
0 1 TACK

1 1 HALT + BuUS GRANT

1 0 SYNC Acknowledge

SYNC Acknowledge is indicated on pins BA and BS
(BA o BS) while the MPU is waiting for external syn-
chronization (on an interrupt line). CWAI does not

tri-state the buses and is not acknowledged.

Interrupt Acknowledge is indicated on pins BA and BS,
(BA A BS) during both cycles of a hardware-vector-

fetch (RESET, NMI, SWI, etc.).

Because the 6800 family does fetch vectors (most
other MPU's do not) this signal, plus decoding of
the lower four bits of the address bus, can provide
high-speed interrupt capability (vectored by device)

which other MPU's do not have.

External decoding logic can indicate which vector is
being used (thus, which interrupt-level has been
accepted), turn-off the vector-ROM (if ROM), and jam
onto the data bus the address of the desired interrupt
handler. This technique could drastically decrease

interrupt latency compared to a polled approach.
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(Continued)
It is not sufficient merely to decode a vector address
to indicate a vector-fetch, since normal accesses,

including indirect JUMPS, can be made to these location:

Such a normal access may well occur even after an ex-
ternal interrupt request has been received (it may be

masked!).

Interrupts (NMI, FIRQ, IRQ)

The interrupt system on the 6809 has been eXtensively
analyzed to eliminate any unknown states from any
combination of hardware signals and valid instruction
operations. All interrupt inputs are latched during
every Q, and will be delayed another bus cycle

before they are seen by the MPU. NMI is edge-sensitive
in the sense that if it is sampled LOW one cycle after
it has been sampled HIGH, a NMI interrupt will be
triggered. Because NMI is not masked by execution of

a NMI, it is possible to take another NMI interrupt
before executing the first instruction of the NMI
routine. A fatal error will exist if an NMI is allowed
to occur regularly before completing the RTI of the

previous NMI, since the stack will surely overflow.

FIRQ and IRQ are both level-sensitive in the sense

that the interrupt will be accepted anytime the running
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(Continued)

processor sees FIRQ or IRQ and the associated mask bit
both LOW. This means that the associated interrupt
handler must cancel the original interrupt, or the

program will never return to the interrupted routine.

FIRQ provides fast interrupt response by stacking only
the return address and condition-codes. This will allow
read-modify-write operations (like CLR, TST, INC, DEC,
rotates, etc) with minimal overhead. Alternately,

any desired subset of registers may be saved (and later

recovered) using PSH/PUL instruction.

IRQ provides a slower response to interrupts, but stacks
the entire machine state. This means that interrupting
routines can use all CPU resources without fear of

damaging the processing of the interrupted routine.

A1l interrupt pins can be used with the SYNC instruction
which causes the processor to stop processing and tri-
state its buses; any interrupt input then causes pro-
cessing to resume. If that input was masked, the pro- -
cessor will simply execute the next in-line instruction.
If that input was not masked (or was NMI) the interrupt
sequence will occur. This means that the same interrupt
line that is used for arbitrary interrupts can be used
for periods of high-throughput program/device synchron-

ization. Naturally, other devices on the same
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(Continued)
line must be disarmed (disabled at the source).

All interrupt-handling routines should return to
the formerly-executing task using an RTI instruction.
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USING 6809 BUS TIMING
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4.

DMA

The three 6800 methods of DMA (HALT-mode, cycle-
stealing, and bus multiplexing) are also available
on the 6809, and cycle-stealing is controlled by

the chip itself (in the on-chip clock version).

Halt-mode DMA is achieved by pulling the HALT line
LOW and waiting for a Halt+DMA acknowledge

(BAABS) =1 which will occur after the last cycle of
the current instruction. The MPU will tri-state its
buses to allow a DMA device to take over the MOS bus,
and the bus clocks (E and Q) from the chip will con-
tinue to run to provide system timing for DMA trans-
fers. The MPU may be held in HALT indefinitely, but
the worst-case latency into Halt-mode DMA is 20 cycles
(SWI2). The Halt-mode is terminated by bringing the
HALT line HIGH; the MPU will resume normal operation

one cycle after goes LOW.

Cycle-stealing DMA is handled (in the on-chip-clock
version) by pulling the DMABREa line LOW with the
trailing edge of Q. The internal MPU clocks will
stop and the MPU will start to tri-state its MOS
drivers a hold-time after the trailing-edge of E
(BA will go LOW). An external DMAVMA must be

generated to disable the memory during the 'dead'
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(Continued)
cycle between different bus masters. External logic

may place the DMA device on the bus sometime during
the last half of the dead cycle. The E and Q bus
clock signals from the chip continue to run to

provide bus timing for DMA transfers.

Synchronous latency into Cycle-stealing DMA is 1less
than one-quarter bus cycle; asynchronous latency may
be a full cycle longer. Cycle-stealing DMA is ter-
minated by returning OMA/BRE& to a HIGH level with the
trailing edge of Q, the DMA device must get off the bus
a hold-time after the trailing-edge of E of the same
cycle (BA = LOW). The MPU will start to come out of
three-state at the end of the dead cycle. (Meanwhile,
an external DMAVMA must be generated to eliminate the

false memory access).

Cycle-stealing DMA is similarly available in the
off-chip-clock version of the 6809, with the ex-
ception that all control and timing occurs external
to the chip. This circuitry must assure that the
MPU is suspended with clock signals EAQ, while

continuing to generate E and Q clocks for the system.

Bus-multiplexing DMA requires external buffers from
the MPU which are gated onto the system buses during

a portion of the MPU cycle (usually during E). Buffers
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from DMA devices are gated on the system buses during

E, thus allowing 50% of the bus bandwidth for DMA.

Dynamic Memory

Dynamic memory is usually considered to be a high-
priority form of cycle-steal DMA. That is, the
refresh controller (possibly a DMA chip) accesses
either 64 (for 4K RAM's) or 128 (for 16K's) consecu-

tive locations within each 2 millisecond interval.

Another form of dynamic memory refresh is to guarantee
a software access of the required number of consecutive
locations every 2 milliseconds. This can be ‘done by
using a real-time clock to cause a FIRQ interrupt, then
using 63 or 127 consecutive PAGE 2 pre-bytes followed
by an RTI; this sequence is not interruptable (and must
not be interruptable, if memory integrity is to be

guaranteed).

Slow Devices

Various clock signals from the 6809 MPU allow for
increasing memory timing parameters, including both

access time and set-up time.

Access-time extension is provided by pulling the

MREADY pin LOW in response to the leading-edge of
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E. The memory-access will be extended, in integral
multiples of the high-frequency clock, until some
period (0-1 H.F. cycles) after the MR line is returned
HIGH. Note that the MPU may only be held not-ready
for 10 microseconds.

Further-
more, the Memory Ready function actually changes the
system E signal; devices which require a real-time

clock must use a different clock source.

Address Set-up time can be easily increased from one-
quarter bus cycle to one-half bus cycle by forming

a new E' signal, E'=EA Q. Since this reduces E'
up-time to one-quarter bus cycle, Memory Ready can be
used to regain the minimum E-time, or increase it,

as necessary. It is also possible to use additional
timing circuitry to apportion set-up and enable per-

formance as desired.

Multi-Processors

Shared-bus multiprocessor systems must arbitrate
between possibly multiple and simultaneous requests
for memory access. Exactly one processor must then
gain the (temporary) use of the bus; remaining pro-
cessors are "held off" using the Memory Ready Control

signal. Naturally, any processor can only be held
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not-ready a maximum of 10 microseconds.

As each memory request is resolved,
MREADY for that processor is brought HIGH, and that
processor delivers the trailing edge of E which

completes the data transfer.



3.0 SOFTWARE ARCHITECTURE

3.1 6809 PROGRAMMING MODEL
The 6809 contains four 8-bit registers and five 16-bit

registers which are visible to the programmer:

N

[ X INDEX REGISTER f]

I Y INDEX REGISTER j

> POINTER REGISTERS

[ U USER STACK POINTER J

[' S HARDWARE STACK POINTER *]
V,

[ PC J PROGRAM COUNTER

L A ] 8 j ACCUMULATORS

N — ,

o

L e ] DIRECT PAGE REGISTER

ele{nfiInjz]v]c CC-CONDITION CODE REGISTER

1————- CARRY- BORROW
t———— OVERFLOW
2ERO
——————-———  NEGATIVE
P INTERRUPT REQUEST MaSK

bt eeeem AL F CARRY

FASY INTERRUPT REQUEST MASK

ENTIRE STATE ON STACK

The Double-Accumulator D consits of the two 8-bit
accumulators concatenated A:B. The A-register is the
MS byte of the pair while the B-register is the LS byte.
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Accumulators (A, B & D)

The A and B registers are general purpose accum-
ulators used for arithmetic calculations and data
manipulation. With the exceptionof ABX, DPA and 16-bit
operations, the two accumulators are compietely
interchangeable. In the catenated form the A-reg-
ister is the MS byte of the pair thru forming the
16-bit Double Accumulator, or D-register.

Direct Page Register (DP )

The Direct Page register defines the MS byte to
be used in the direct mode of addressing; the DP
is catenated with the byte following the direct-
mode op code to form a 16-bit effective address.
The DP will be initialized to $00 by RESET for
6800 compatibility.

Condition Code Register (CC )

The Condition Code register defines the state of
the processor flags at any given time. The bits
in the CC are:

B7 B6 B5 B4 B3 B2 Bl BO
EfFIHJTINVZYV)C

Bit 5 and bits 3-0 are set as the result of instruc-
tions that manipulate data; for details, see con-
dition code section for each instruction.



3.1.3.1 Bit 0 (C)

b0 is the Carry flag, and is usually gen-
erated by the binary carry from the MSB

of the operation (ADC, ADD) -- this is an
unsigned overflow. However, C is also

used to represent a 'borrow' (a NOT-carry)

to and from subtract-like instructions

(CMP, NEG, SBC, SUB), and MUL uses C to
represent b7 of the result for round-off
purposes. Data-movement and logical operations
do not affect C, while arithmetic operations

set C, if appropriate.

3.1.3.2 Bit 1 (V)

bl is the overflow flag, and is set by an
operation which causes a two's-complement
arithmetic overflow. The overflow is, of
course, detected in an operation if the
carry from the MSB in the binary ALU does
not match the carry from the MSB-1. Loads,
stores, and logical operations clear V,
while arithmetic operations set V if appro-
priate.

3.1.3.3 Bit 2 (2)

b2 is the zero flag, and is set if the re-
sult of the previous operation was ident-
ically zero. Loads, stores, logical and

arithmetic operations set Z if appropriate.



3.1.3.4 Bit 3 (N)

3.1.

b3 is the negative flag, which contains
exactly the value of the MSB of the result

of the preceeding operation. Thus, a
negative two's complement result will leave

N set. Loads, stores, logical and arithmetic
operations all set N if appropriate. If a
two's complement overflow occurs, the sign
of the result (and the N-flag) will be in-
correct. For this reason two's complement
branches use the expression (NeV) to obtain

an always-valid sign result.

.5 Bit 4(1)

b4 is the IRQ mask bit. The processor will
not recognize interrupts from the IRQ line
if this bit is Set. NMI, FIRQ, IRQ, RESET
and SWI all Set I; SWIZ and SWI3 do not
affect I.

.6 Bit 5 (H)

b5 is the half-carry bit, and is used to
indicate a carry from b3 in the ALU as a
result of an 8-bit addition only (ADC or
ADD). This bit is used by the DAA instruc-
tion to pefform a (BCD) decimal add adjust
operation. The state of the H flag is
undefined in all subtract-like instructions
to allow for future expansion; software must
not depend upon a particular state of the

H flag after subtract operations.



3.1.3.7 Bit 6 (F)

b6 is the FIRQ mask bit. The processor
will not recognize interrupts from the

FIRQ line if this bit is set. NMI, FIRQ,
SWI and RESET all Set F; IRQ, SWI2 and SWI3
do not affect F.

3.1.3.8 Bit 7 (E)

b7 is the entire flag, and indicates either
the complete machine state (all the registers)
or the subset state (PC and CC ) is being
stacked. E is used by the RTI instruction

to determine the extent of the unstacking,
thus allowing some interrupt-handling routines
which work with both fast and slow interrupts.
FIRQ will clear E while IRQ, NMI, SWI, SWIZ,
and SWI3 will set E before stacking. The E
bit associated with the saved registers 1is

in the E flag position in the CC of the
stacked state; the E bit in the processor

has little meaning.

3.1.3.9 Interrupt Effects on CC

After accepting an IRQ interrupt, the pro-
cessor will set the E flag, save the entire
machine state, then set the I mask bit to

mask out the present and further IRQ inter-
rupts. After clearing the original interrupt,
the user may reset the I mask bit to allow
multiple-level IRQ interrupts. The IRQ
interrupt will not affect the F mask bit,

thus, in general a FIRQ may interrupt an IRQ
handler. The machine state as it was before the
interrupt will be recovered by the associated RTI.



3.1.3.9

(Continued)

After accepting a FIRQ interrupt, the pro-
cessor will clear the E flag, save the sub-
set machine state (return address and CC ),
then set both the I and F-bits to mask out the
present FIRQ and further IRQ and FIRQ inter-
rupts. After clearing the original inter-
rupt, the user may reset the I and F bits
to allow multiple-level interrupts. The

PC and CC (including the previous state of
the mask bits) will be recovered by the
associated RTI.
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Index Register ( X, VY)

The index registers are used in indexed mode
addressing. They provide a 16-bit address to

be added to an optional offset (0f up to 16-bits)
for indexed instructions; the result of the addi-
tion is the effective address of the instruction.
For more details see the section on addressing
modes. The X and Y registers are essentially
equivalent in usage and support the same instruc-
tions. Because automatic pre-increment and post-
decrement options are available on indexed-mode
operations, these registers may be used to easily
implement software stacks, queues, and buffers.

Stack Pointers (U , S )

The stack pointer registers contain addresses that
point to the top of a push-down/pop-up stack. Data
and machine state can be pushed onto the stack
(stored at the next memory address to that 'pointed"
to by the U or S ) or pulled from the stack in a
last-in first-out manner. Pushes decrement the
stack pointer before the data is stored while pulls
increment the stack pointer after the data is re-
covered; the stack pointers point at the Tast

byte placed on the stack. The S 1is used by the
hardware to automatically store subset or entire
machine states during subroutines and interrupts.
The User Stack (U ) is controlled exclusively by
the programmer and can be used to pass arguments

to and from subroutines. Both the U and S have
the same indexed-mode addressing capabilities as
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the X and Y index registers; the stack pointers are en-
hanced index registers (although the operation as LEA
is slightly different on the stack registers). This al-
lows the 6809 to 'be used efficiently as a stack pro-
cessor, greatly enhancing its ability to support high-
er level languages.

Program Counter (PC)

The PC is used by the hardware to point to the

next instruction to be executed by the processor.
Limited indexed-mode addressing is available on

the PC (i.e., auto-increment/decrement is not
available). For notational canvenience the des-
cription of each instruction assumes that the
program counter points one location past the last
byte of the op code,'as it would after decoding the
instruction. As additional bytes are used by the
instruction the PC always points to the next unused
byte.

EXAMPLE: The branch instructions are available

in either short or long forms; in general the short
form takes a one-byte opcode, while the long form
takes two bytes. After decoding the opcode, the

PC points at either a one- (short branch) or two-
byte (long) immediate value, which is taken into

the machine for addition to the PC. If the branch
is not taken, the addition never happens and the PC
remains pointing to the next instruction. Indexed-

mode instructions also have variable length fields.
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Stack Programming Techniques

Good programming practice indicates use of space
in the hardware stack for temporary storage. The
stack pointer is decremented by the amount of
storage required (LEAS -TEMPS, S) making space for
temporaries from 0,S through TEMPS-1,S. This
technique is structured, position-independent,

and allows recursion.

Global variables may be considered local to the
highest-level routine, and allocated storage there.
Unfortunately, access to these same variables re-
quires different offset values depending upon sub-
routine depth, itself a dynamic parameter which may
not be readily available. This problem can be
solved by assigning one pointer to mark a location
(TFR S,U) on the hardware stack. If this is done
immediately prior to allocating global storage,

all variables will be available at a constant,
positively-offset location from the stack mark.
Unstructured multi-level returns are also available;
this feature may be useful for aborting the entire
package and cleaning up the stack.

Because the hardware stack pointer may be pre-
empted at any time by hardware interrupts, it is
an extremely dangerous practice to utilize data
referred to by negative offset with respect to the
hardware stack pointer (SP).



3.2 ADDRESSING

3.2.1 Register Addressing Notationx*

Accumulator ACCA or ACCB (A or B)
Double Accumulator ACCA:ACCB or ACCD (D)
Index Register IX or IY (X or Y)
Stack Register SP or US (S or U)
Program Counter PC (PC)

Direct Page Register DPR (DP)

Condition Code Register CCR (cc)

3.2.2 Register Addressing Modes

3.2.2.1 Accumulator
3.2.2.2 Double-Accumulator

3.2.2.3 Inherent

* The longer-form notation (i.e., ACCA, ACCB, ACCD, IX,
1Y, SP, US, PC, DPR, CCR) is used by this document to
describe the CPU registers. The short-form notation
(i.e., A, B, D, X, Y, S, U, PC, DP, CC) is used by the
6809 Assembler.



3.2.3 Memory Addressing Notation
@) = The (8-Bit) data pointed to by the en-
closed (16-Bit) address

The Effective Address; a pointer into

EA

memory created as a result of an address-
ing mode.

M = (EA)= the data in the address space ('"MEMORY'")
pointed to by the effective address

MI

Memory Immediate Addressing; the data
immediately following the last byte of
the op code

dd 8-Bit Offset (or a relative distance to a
label which evaluates to 8-bits)

16-Bit Offset (or a relative distance to
a label)

Immediate, Direct, Indexed, Extended

DDDD

VO R
i} n

Accumulator, Direct, Indexed, Extended
Offset such that -64K < YYYY < 64K

Any indexable register (IX,IY,SP, or US)
8-Bit hex value

YYYY

PO N |
> 3
oo

%
It

PC at start of present instruction

Start of next instruction

=z
1}

Indexed Addressing only.
Immediate Addressing Byte(s) Follow(s)

&
it

Hex Value Follows

oL
]

Binary Value Follows

A
1]

Before indexing: force one-byte offset form

(for known forward reference)

Before absolute address; force direct

addressing (obtain warning if SETDP # MS Byte value)

Before indexing; force two-byte offset form

v
"

Before absolute address; force extended

addressing.

i}

s Indexing symbol

L1

Indirection
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It is understood for convenience of description
that the PC points one byte past the last byte
of the instruction op code at the beginning of

instruction execution.

The assembler uses brackets "[]" to indicate indirec-

tion. This avoids evaluation confusion with paren-

theses "()" which are allowed in expressions.



3.2.4 Memory Addressing Modes

3.2.4.1 Inherent
Example: MUL

Inherent addressing includes those instructions
which have no addressing options.

3.2.4.2 Accumulator

Example: CLRA
CLRB

Accumulator addressing includes those instructions
which operate on an accumulator.

3.2.4.,3 Immediate EA = PC

Example: LDA #CR
LDB #7
LDA #$F0
LDB #%11110000
LDX #$8004

Immediate addressing refers to the location(s)
following the last byte of the op code. This

mode is used to hold a value which is known at
assembly time and which will not be changed during
program execution.

3.2.4.4 Absolute (Immediate Indirect)

Example: LDA 58004
LDB CAT

Absolute addressing refers to an exact 16-bit
location in the memory address space, and is
especially useful for transactions with peri-
pherals (I1/0).



3.2.4.4

(Continued)

There are three program-selectable modes of
absolute addressing, namely: Direct, Extended,
and Extended Indirect. Certain instructions
(SWI, SWI2, SWI3), and the interrupts, use an
inherent absolute address to function similarly
to Extended Indirect mode addressing. These
instructions are said to have "Absolute Indirect"
addressinag.



3.2.4.4.1 Direct EA = DPR:(PC)
LDA <CAT

Direct addressing uses the immediate byte of

the instruction as a one-byte pointer into a
single 256-byte "page" of memory. (The term
"page" refers to one of the 256 possible com-
binations of the high-order address bits.) The
particular page in use is fixed by loading the
Direct Page Register with the desired high-order
byte (by transferring from or exchanging with
another register.) Thus, the effective address
consists of a high-order byte (from the Direct
Page Register) catenated with a low-order byte
(from the instruction).

This mode may allow economies of both program
space and excution time as compared to other
absolute or indexed modes.

3.2.4.4.2 Extended EA = (PC):(PC+1)
Example: LDA >CAT

Extended addressing uses a 16-bit immediate
value (and thus contained in the two bytes
followinag the last byte of the op code) as the
exact memory address value.

3.2.4.4.3 Extended Indirect EA = ((PC):(PC+1))
Example: LDA [$F000]

Extended indirect addressing uses a 16-bit
immediate value as an absolute address from
which to recover the effective address.



3.2.4.4.3 (Continued)

This mode is inherently used by interrupts

to vector to the handling routine; and may

be used to create vector tables in a cust-
omized system which allow the use of standard
software packages.

Although Extended Indirect is a logical
extension of Extended addressing, this mode
is implemented using an encodina of the post-
byte under the indexed addressing group.



3.2.4.5 Register
Example: TFR X,Y

Register addressing refers to the selection of
various on-board registers.

3.2.4.6 Indexed (Register Indirect)

The 6809 includes extremely powerful indexing
capabilities. There are five indexable registers
(X,Y,S,U, and PC) with many options (constant-
offset, accumulator offset using A,B, or D,
auto-increment or -decrement, and indirection).
These options are selected by complex coding of
the first byte after the op code byte(s) of
indexed-mode instructions. Most 6800 indexed-
mode instructions will map into an equivalent

two bytes on the 6809.



3.2.4.6.1 Constant-0Offset Indexed
Examples: LDA » X

LDB 0,Y
LDX 64000,S
LDY -64000,U

LDA 17,PC
LDA THERE,PCR

Constant-offset indexing uses an optional two's
complement offset contained in either the post
byte of the instruction as a bit-field or as an
immediate value. This offset may be an absolute
quantity, a symbol, or an expression and may
range from zero to a 16-bit binary value which
may be specified either positive or negative with
an absolute value less or equal to 216. The off-
set value is temporarily added to the pointer
value from the selected register (X,Y,U,S, or PC);
the result is the effective address which points
into memory.

A number of hardware modes are available to
reduce the number of instruction bytes for
various options. The majority of 6800 indexed-
mode instructions will still need only two
bytes on the 6809.

The notation THERE, PCR causes the assembler
to compute the relative distance between the
location of the symbol THERE elsewhere in the
program, and the present value of the program



3.2.4.6.1 (Continued)

counter. The computed value is used as an
immediate value in the instruction, indexed from
the program-counter. This notation is painlessly
position-independent.

Because a 16-bit offset is allowed, the (nec-
essarily aﬁ@]ute) address of the indexable data
may be carried as a constant value in the index-
ing instructions. This would allow the "index
register” to be simultaneously used for index-
ing and counting using LEA.

With exceptions for 6800 compatibility, the 6809
assembly language uses a comma (,) to indicate a single
level of indexed indirection. That is, LDX ,Y should

be interpreted as: X-=<—(Y):(Y+1) while LDX Y could

be: X<«Y. This symbology allows the programmer
access to a large number of language-compatible macros,
and forces the addressing symbology to be apparent for
many different instructions. The instructions PSH, PUL,

TFR, and EXG are also exceptions.

3.2.4.6.2 Constant-0ffset Indexed Indirect

*

Examples: LDA [,X]*
LDB [9,Y]
LDX [64000,S]
LDY [-64000,U]
LDA [17,PC]
LDA [THERE,PCR]

Brackets indicate indirection to the assembler.



3.2.4.6.2 (Continued)

Constant-offset indexed indirect addressing
functions in two stages (like all indirects).
First an indexed address is formed by temp-
orarily adding the offset-value contained in
the addressing byte(s) to the value from the
selected pointer register (X,Y,S,U, or PC).
Second, this address is used to recover a
two-byte absolute pointer which is used as the
"effective address."

This mode allows the programmer to use a "table
of pointers" data structure, or to do I/0 through
absolute values stored on the stack.

3.2.4.6.3 Accumulator Indexed

Examples: LDA A, X
LDA B,Y
LDA D,U

Accumulator-indexed addressing uses an accum-
ulator (A,B, or D) as a two's complement offset
which is temporarily added to the value from
the selected pointer register (X,Y,S, or U) to
form the effective address.

3.2.4.6.4 Accumulator Indexed Indirect

Examples: LDA [A,X]
LDA [B,Y]
LDA [D,U]

Accumulator-indexed indirect addressing uses an
accumulator (A,B,or D) as a two's complement



3.2.4.6.4 (Continued)

3.2.

4.

offset which is temporarily added to the value
from the selected pointer register (X,Y,S, or U).
The resulting pointer is then used to recover
another pointer from memory (thus, the indirect
designation) which is then used as the effective
address.

.6.5 Auto-Increment

Examples: LDA » X+ LDX S X++
LDA S Y ¥ LDX s Y++
LDA s S+ LDX ,Ut+

LDA , U+ LDX , S+
Auto-increment addressing uses the value in
the selected pointer register (X,Y,S, or U)
to address a one-or two-byte value in memory.
The register is then incremented by one (single
+) or two (two +'s). No offset is permitted.

6.6 Auto-Increment Indirect
Examples: LDA [,x++1

LDB  [,Yy++1

LDD [.S++7]

LDX C,u++7]
Auto-increment indirect addressing uses the
value in the selected pointer register (X,Y,S,
or U) to recover an address value from memory.
This value is used as the effective address.
The register is then incremented by two (++); the
indirected increment by one is illegal. No

offset is permitted.



3.2.4.6.7 Auto-Decrement

Examples: LDA » =X LDX y--X

LDA , =Y LDX ,--Y

LDA ,-U LDX ,--U

LDA y =S LDX »--S
Auto-decrement addressing first decrements the
selected pointer register (X,Y,S, or U) by
one (-) or two (--) as selected by the user.
The resulting value is then used as the effective
address. No offset is permitted.

3.2.4.6.8 Auto-Decrement Indirect

Examples: LDA [,--x1

LDB [,--Y]

LDD C,--U]

LDX [,--S1
Auto-decrement indirect addressing first decre-
ments the selected pointer register by two (--).
Auto-decrement by one indirect is prohibited in
the assembly language. The resulting value is used
to recover a pointer value from memory; this value
is used as the effective address. No offset is
permitted.

3.2.4.7 Relative
Example: BRA POLE
(Short) Relative addressing adds the value of
the immediate byte of the instruction (an 8-bit
two's complement value) to the value of the
program counter to produce an absolute address.
This addressing mode is always position-in-
dependent.



3.2.4.8

Long Relative
Example: LBRA CAT

Long Relative addressing adds the value of the
immediate bytes of the instructions (a 16-bit
two's complement value) to the value of the
program counter to produce an absolute address.
This addressing mode is always position-inde-
pendent.



3.3 INSTRUCTION SET

3.3.1 Operation Notation

is Transferred to

= Boolean AND

Boolean OR

= Boolean EXCLUSIVE-OR

= (overline) = Boolean NOT

| @ < = 4
n

= (Concatenation

3.3.2 Register Notation

ACCA = A = Accumulator A

ACCB = B = Accumulator B

ACCX = Either ACCA or ACCB

ACCA:ACCB = D = Double Accumulator

IX = X = Index Register X

IY = ¥ = Index Register Y

SP = § = Hardware Stack Pointer

us = U = User Stack Pointer

DPR = DP = Direct Page Register

CCR = CC = Condition Code Register

PC = Program Counter

R = A Register before the operation;
A,B,D,X,Y,U,S,PC,DP or CC
(usually, only a subset of registers is
legal, these are specified by "Register
Addressing Mode" in the individual in-
structions)

R' = A Register after the operation

ALL = A11 Registers; ie.,A,B,D,X,Y,U,S,PC,DP & CC

17 = A Pointer Register; ie., X,Y,U,S

MSB = Most-Significant BIT

MS BYTE = Most-Significant BYTE

LS BYTE - Least-Significant BYTE

IXH = MS Byte of Index X

IXL = LS Byte of Index X



ABX Add ACCB Into IX

SOURCE FORM: ABX

OPERATION: IX' <« IX + ACCB

CONDITION CODES: Not Affected

DESCRIPTION:

Add the 8-bit unsigned value in Accumulator B into the

X index register.

ADDRESSING MODE: Inherent



ADC Add With Carry Memory Into Register

SOURCE FORMS: ADCA P; ADCB P

OPERATION: R' « R+ M + C

CONDITION CODES:

Set IFF the operation caused a carry from bit 3 in the ALU
Set IFF bit 7 of the result is Set.

Set IFF all bits of the result are Clear

Set IFF the operation caused an 8-bit two's complement

< N Z

arithmetic overflow.
C: Set IFF the operation caused a carry from bit 7 in the ALU

DESCRIPTION:

Adds the contents of the carry flag and the memory byte into
an 8-bit register.

REGISTER ADDRESSING MODE: Accumulator

MEMORY ADDRESSING MODES: Immediate
Direct
Indexed
Extended



ADD

Add Memory Into Register - 8 Bit

SOURCE FORMS:

OPERATION:

R '

ADDA P; ADDB P

« R+ M

CONDITION CODES:

IFF
IFF
IFF
IFF

the operation caused a carry from bit 3 in the ALU
bit 7 of the result is Set

all bits of the result are Clear

the operation caused an 8-bit two's complement

arithmetic overflow.

Set IFF the operation caused a carry from bit 7 in the ALU

H: Set
N: Set
Y4 Set
v Set
C:
DESCRIPTION:

Adds the memory byte into an 8-bit register.

REGISTER ADDRESSING MODE: Accumulator

MEMORY ADDRESSING MODES: Immediate

Direct
Indexed
Extended



ADD Add Memory Into Register - 16 Bits

SOURCE FORM: ADDD P

OPERATION: R' « R + M:M+]

CONDITION CODES:

Not Affected

Set IFF bit 15 of the result if Set

Set IFF all bits of the result are Clear

Set IFF there was a 16-bit two's complement arithmetic

< N =Z

overflow
C: Set IFF the operation on the MS Byte caused a carry
from bit 7 in the ALU.

DESCRIPTION:

Adds the 16-bit memory value into the 16-bit accumulator.

REGISTER ADDRESSING MODE: Double Accumulator

MEMORY ADDRESSING MODES: Immediate
Direct
Indexed
Extended



AND Logical AND Memory Into Register

SOURCE FORMS: ANDA P; ANDB P

OPERATION: R' « R A M

CONDITION CODES:

Not Affected

Set IFF bit 7 of result is Set

Set IFF all bits of result are Clear
Cleared

Not Affected

O =< N =Z T

DESCRIPTION:

Performs the logical "AND" operation between the contents
of ACCX and the contents of M and the result is stored
in ACCX.

REGISTER ADDRESSING MODE: Accumulator

MEMORY ADDRESSING MODES: Immediate
Direct
Indexed
Extended



AND Logical AND Immediate Memory Into CCR

SOURCE FORM: ANDCC #XX

OPERATION: R' « R A MI

CONDITION CODES: CCR' « CCR A MI

DESCRIPTION:

Performs a logical "AND" between the CCR and the MI byte
and places the result in the CCR.

REGISTER ADDRESSING MODES: CCR

MEMORY ADDRESSING MODE: Memory Immediate



ASL Arithmetic Shift Left

SOURCE FORM: ASL Q

OPERATION: c}e[ J [ J FJ « 0
b7 <« b0
C'«b,, by! by' « bg...bys by' « O

CONDITION CODES:

H: Undefined
N: Set IFF bit 7 of the result is Set
Z: Set IFF all bits of the result are Clear
V: Loaded with the result of (b7 8 b6) of the original operand.
C: Loaded with bit 7 of the original operand.
DESCRIPTION:

Shifts all bits of the operand one place to the left.
Bit 0 is loaded with a zero. Bit 7 of the operand
is shifted into the carry flag.

ADDRESSING MODES: Accumulator
Direct
Indexed
Extended



ASR Arithmetic Shift Right

SOURCE FORM: ASR Q

l |
OPERATION:

b

7
C' « b

CONDITION CODES:

H: Undefined

N: Set IFF bit 7 of the result is Set

Z: - Set IFF all bits of result are Clear

V: Not Affected

C: Loaded with bit 0 of the original operand.
DESCRIPTION:

Shifts all bits of the operand right one place.
Bit 7 is held constant. Bit 0 is shifted into the carry
flag. The 6800ﬂ0V02/ay@8 processors do affect the V flag.

ADDRESSING MODES: Accumulator
Direct
Indexed
Extended



BCC Branch on Carry Clear

SOURCE FORMS: BCC dd; LBCC DDDD

OPERATION: TEMP « MI
IFF C = 0 then PC' <« PC + TEMP

CONDITION CODES: Not Affected

DESCRIPTION:

Tests the state of the C bit and causes a branch if C
is clear.

MEMORY ADDRESSING MODE: Memory Immediate

EFFECTIVE ADDRESSING MODES: Relative
Long Relative

COMMENTS:

When used after a subtract or compare on unsigned binary
values, this instruction could be called "branch if the
register was higher or the same as the memory operand".



BCS Branch on Carry Set

SOURCE FORMS: BCS dd; LBCS DDDD

OPERATION: TEMP « MI
IFF C = 1 then PC' « PC + TEMP

CONDITION CODES: Not Affected

DESCRIPTION:

Tests the state of the C bit and causes a branch if C is set.

MEMORY ADDRESSING MODE: Memory Immediate

EFFECTIVE ADDRESSING MODES: Relative
Long Relative

COMMENTS:

When used after a subtract or compare on unsigned binary
values, this instruction could be called "branch if the
register was lower then the memory operand".



BEQ Branch on Equal

SOURCE FORMS: BEQ dd; LBEQ DDDD

OPERATION: TEMP « MI
IFF Z = 1 then PC' « PC + TEMP

CONDITION CODES: Not Affected

DESCRIPTION:

Tests the state of the Z bit and causes a branch if
the Z bit is set.

MEMORY ADDRESSING MODE: Memory Immediate

EFFECTIVE ADDRESSING MODES: Relative
Long Relative

COMMENTS:

Used after a subtract or compare operation, this instruction
will branch if the compared values - signed or unsigned -
were exactly the same.



BGE Branch on Greater than or Equal to Zero

SOURCE FORMS: BGE dd; LBGE DDDD

OPERATION: TEMP <« MI
IFF [N @ V] = 0 then PC' « PC + TEMP

CONDITION CODES: Not affected

DESCRIPTION:

Causes a branch if N and V are either both set or both
clear (i.e., branch if the sign of a valid two's complement
result is - or would be - positive).

MEMORY ADDRESSING MODE: Memory Immediate

EFFECTIVE ADDRESSING MODES: Relative
Long Relative

COMMENTS:

Used after a subtract or compare operation on two's
complement values, this instruction will "branch if
the register was greater than or equal to the memory
operand,"



BGT Branch on Greater

SOURCE FORMS: BGT dd; LBGT DDDD

OPERATION: TEMP <« MI
IFF Z v [N ® V] = 0 then PC' « PC + TEMP

CONDITION CODES: Not affected

DESCRIPTION:

Causes a branch if (N and V are either both set or both
clear) and Z is clear. In other words, branch if the sign
of a valid two's complement result is- or would be - positiv

and non-zero.

MEMORY ADDRESSING MODE: Memory Immediate

EFFECTIVE ADDRESSING MODES: Relative
Long Relative

COMMENTS:

Used after a subtract or compare operation on two's
complement values, this instruction will "branch if
the register was greater than the memory operand".



BHI Branch if Higher

SOURCE FORMS: BHI dd; LBHI DDDD

OPERATION: TEMP <« MI
IFF [C v Z] = 0 then PC' « PC + TEMP

CONDITION CODES: Not Affected

DESCRIPTION:

Causes a branch if the previous operation caused neither
a carry nor a zero result.

MEMORY ADDRESSING MODE: Memory Immediate

EFFECTIVE ADDRESSING MODES: Relative
Long Relative

COMMENTS:

Used after a subtract or compare operation on unsigned
binary values this instruction will "branch if the register
was higher than the memory operand." Not useful, in general
after INC/DEC, LD/ST, TST/CLR/COM.



BHS Branch if Higher or Same

SOURCE FORM: BHS dd; LBHS DDDD

OPERATION: TEMP <« MI
IFF C = 0 then PC' « PC + MI

CONDITION CODES: Not Affected

DESCRIPTION:

Tests the state of the C-bit and causes a branch if C is
clear.

MEMORY ADDRESSING MODE: Memory Immediate

EFFECTIVE ADDRESSING MODES: Relative
Long Relative

COMMENTS:

When used after a subtract or compare on unsigned binary
values, this instruction will "branch if register was
higher than or same as the memory operand." This is a
duplicate assembly-language mnemonic for the single

machine instruction BCC. Not useful, in general, after INC/
DEC, LD/ST, TST/CLR/COM.



BIT Bit Test

SOURCE FORM: BIT P

OPERATION: TEMP « R A M

CONDITION CODES:

Not Affected

Set IFF bit 7 of the result is Set

Set IFF all bits of the result are Clear
Cleared

Not Affected

O << N Z

DESCRIPTION:

Performs the logical "AND" of the contents of ACCX and
the contents of M and modifies condition codes accordingly.
The contents of ACCX or M are not affected.

REGISTER ADDRESSING MODE: Accumulator

MEMORY ADDRESSING MODES: Immediate
Direct
Indexed
Extended



BLE Branch on Less than or Equal to Zero

SOURCE FORM: BLE dd; LBLE DDDD

OPERATION: TEMP « MI
IFF Z v [N & V] = 1 then PC' « PC + TEMP

CONDITION CODES: Not affected

DESCRIPTION:

Causes a branch if the "Exclusive OR" of the N and V
bits is 1 or if Z = 1. That is, branch if the sign of a valid

two's complement result is - or would be - negative.

MEMORY ADDRESSING MODE: Memory Immediate

EFFECTIVE ADDRESSING MODES: Relative
Long Relative

COMMENTS:

Used after a subtract or compare operation on two's
complement values, this instruction will "branch if the
register was less than or equal to the memory operand".



BLO Branch on Lower

SOURCE FORM: BLO dd; LBLO DDDD

OPERATION: TEMP « MI
IFF C = 1 then PC' « PC + TEMP

CONDITION CODES: Not affected

DESCRIPTION:

Tests the state of the C bit and causes a branch if
C is Set.

MEMORY ADDRESSING MODE: Memory Immediate

EFFECTIVE ADDRESSING MODES: Relative
Long Relative

COMMENTS:

When used after a subtract or compare on unsigned binary
values, this instruction will "branch if the register was
lower" than the memory operand. Note that this is a duplicate
assembly-language mnemonic for the single machine instruction

BCS. Not useful, in general, after INC/DEC, LD/ST, TST/CLR/COM.



BLS Branch on Lower or Same

SOURCE FORM: BLS dd; LBLS DDDD

OPERATION: TEMP « MI
IFF (C v Z) = 1 then PC' « PC + TEMP

CONDITION CODES: Not affected

DESCRIPTION:

Causes a branch if the previous operation caused either

a carry or a zero result.

MEMORY ADDRESSING MODE: Memory Immediate

EFFECTIVE ADDRESSING MODES: Relative
Long Relative

COMMENTS:

Used after a subtract or compare operation on unsigned
binary values, this instruction will "branch if the
register was lower than or the same as the memory operand."
Not useful, in general, after INC/DEC, LD/ST, TST/CLR/COM.



BLT Branch on Less than Zero

SOURCE FORMS: BLT dd; LBLT DDDD

OPERATION: TEMP <« MI
IFF [N ®V]= 1 then PC' < PC + TEMP

CONDITION CODES: Not affected

DESCRIPTION:

Causes a branch if either, but not both, of the N or V
bits is '1.' That is, branch if the sign of a valid two's
complement result is - or would - negative.

MEMORY ADDRESSING MODE: Memory Immediate

EFFECTIVE ADDRESSING MODES: Relative
Long Relative

COMMENTS:

Used after a subtract or compare operation on two's
complement binary values, this instruction will "branch
if the register was less than the memory operand."



BMI Branch on Minus

SOURCE FORM: BMI dd; LBMI DDDD

OPERATION: TEMP « MI
IFF N = 1 then PC' « PC + TEMP

CONDITION CODES: Not affected

DESCRIPTION:

Tests the state of the N bit and causes a branch if N
is set. That is, branch if the sign of the two's complement
result is negative.

MEMORY ADDRESSING MODE: Memory Immediate

EFFECTIVE ADDRESSING MODES: Relative
Long Relative

COMMENTS:

Used after an operation on two's complement binary
values, this instruction will "branch if the (possibly invalid)
result is minus."



BNE Branch Not Equal

SOURCE FORMS: BNE dd; LBNE DDDD

OPERATION: TEMP <« MI
IFF Z = 0 then PC' <« PC + TEMP

CONDITION CODES: Not Affected

DESCRIPTION:

Tests the state of the Z bit and causes a branch if
the Z bit is clear.

MEMORY ADDRESSING MODE: Memory Immediate

EFFECTIVE ADDRESSING MODES: Relative
Long Relative

COMMENTS:

Used after a subtract or compare operation on any binary
values, this instruction will "branch if the register
is (or would be) not equal to the memory operand."



BPL Branch on Plus

SOURCE FORM: BPL dd; LBPL DDDD

OPERATION: TEMP <« MI
IFF N = 0 then PC' « PC + TEMP

CONDITION CODES: Not affected

DESCRIPTION:

Tests the state of the N bit and causes a branch if

N is clear. That is, branch if the sign of the two's

complement result is positive.

MEMORY ADDRESSING MODE: Memory Immediate

EFFECTIVE ADDRESSING MODES: Relative
Long Relative

COMMENTS:

Used after an operation on two's complement binary

values, this instruction will "branch if the

invalid result is positive."

possibly



BRA Branch Always

SOURCE FORMS: BRA dd; LBRA DDDD

OPERATION: TEMP <« MI
PC' « PC + TEMP

CONDITION CODES: Not Affected

DESCRIPTION:

Causes an unconditional branch.

MEMORY ADDRESSING MODE: Memory Immediate

EFFECTIVE ADDRESSING MODES: Relative
Long Relative



BRN Branch Never

SOURCE FORM: BRN dd; LBRN DDDD

OPERATION: TEMP « MI

CONDITION CODES: Not affected

DESCRIPTION:

Does not cause a branch. This instruction is essentially
a NO-0P, but has a bit pattern logically related to BRA.

MEMORY ADDRESSING MODE: Memory Immediate

EFFECTIVE ADDRESSING MODES: Relative
Long Relative



BSR Branch to Subroutine

SOURCE FORM: BSR dd; LBSR DDDD

OPERATION: TEMP <« MI
SP' «SP-1, (SP) <« PCL
SP'«SP-1, (SP) « PCH
PC' « PC + TEMP

CONDITION CODES: Not affected

DESCRIPTION:

The program counter is pushed onto the stack. The program
counter is then loaded with the sum of the program counter
and the memory immediate offset.

MEMORY ADDRESSING MODE: Memory Immediate

EFFECTIVE ADDRESSING MODES: Relative
Long Relative



BVC Branch on Overflow Clear

SOURCE FORM: BVC dd; LBVC DDDD

OPERATION: TEMP « MI
IFF V = 0 then PC' « PC + TEMP

CONDITION CODES: Not Affected

DESCRIPTION:

Tests the state of the V bit and causes a branch if the
V bit is clear. That is, branch if the two's complement
result was valid.

MEMORY ADDRESSING MODE: Memory Immediate

EFFECTIVE ADDRESSING MODES: Relative
Long Relative

COMMENTS:

Used after an operation on two's complement binary values,
this instruciton will "branch if there was no overflow".



BVS Branch on Overflow Set

SOURCE FORM: BVS dd; LBVS DDDD

OPERATION: TEMP « MI
IFF V. = 1 then PC' «PC + TEMP

CONDITION CODES: Not affected

DESCRIPTION:

Tests the state of the V bit and causes a branch if
the V bit is set. That is, branch if the two's complement

result was invalid.

MEMORY ADDRESSING MODE: Memory Immediate

EFFECTIVE ADDRESSING MODES: Relative
Long Relative

COMMENTS:

Used after an operation on two's complement binary
values, this instruction will "branch if there was an
overflow." This instruction is also used after ASL or
LSL to detect binary floating-point normalization.



CLR Clear

SOURCE FORM: CLR Q

OPERATION: TEMP « M

M « 0016

CONDITION CODES:
H: Not affected

N: Cleared

Z: Set

V: Cleared

C: Cleared
DESCRIPTION:

ACCX or M is loaded with 00000000. The C-flag is cleared
for 6800 compatibility.

ADDRESSING MODES: Accumulator
Direct
Indexed
Extended



CMP Compare Memory from a Register - 8 Bits

SOURCE FORM: CMPA P; CMPB P
OPERATION: TEMP « R - M [i.e., TEMP « R + M + 1]

CONDITION CODES:

H: Undefined

N Set IFF bit 7 of the result is Set.

Z: Set IFF all bits of the result are Clear.

) Set IFF the operation caused an 8-bit two's
complement overflow

C: Set IFF the subtraction did not cause a carry from
bit 7 in the ALU

DESCRIPTION:

Compares the contents of M from the contents of the
specified register and sets appropriate condition codes.
Neither M nor R is modified. The C flag represents a
borrow and is set inverse to the resulting binary carry.

REGISTER ADDRESSING: Accumulator

MEMORY ADDRESSING: Immediate
Direct
Indexed
Extended

FLAG RESULTS:
(N®V) = 1 R .LT. M (2's comp)
C =1R .LO. M (unsigned)
Z =1R .EQ. M



CMP Compare Memory From a Register - 16 Bits

SOURCE FORMS: CMPD P; CMPX P, CMPY P; CMPU P; CMPS P
OPERATION: TEMP <« R - M:M+1 [i.e., TEMP « R + M:M+1 +1]

CONDITION CODES:

H Unaffected

N: Set IFF bit 15 of the result is Set

Z: Set IFF all bits of the result are Clear.

v Set IFF the operation caused a 16-bit two's
complement overflow

C: Set IFF the operation on the MS byte did not cause a
carry from bit 7 in the ALU

DESCRIPTION:
Compares the 16-bit contents of M:M+1 from the contents
of the specified register and sets appropriate condition
codes. Neither R nor M:M+1 is modified. The C flag
represents a borrow and is set inverse to the resulting
binary carry.

REGISTER ADDRESSING: Double Accumulator
Pointer (X, Y, S, or U)

MEMORY ADDRESSING: Immediate
Direct
Indexed
Extended

FLAG RESULTS:

(N®V) =1 LT, M (2's comp)
c =1 .LO. M (unsigned)
Z =1 .EQ. M



COM Complement

SOURCE FORM: COM Q

OPERATION: M' « 0 + M

CONDITION CODES:
H: Not affected

N:

Z:

V: Cleared

C: Set
DESCRIPTION:

Set IFF bit 7 of the result is Set
Set IFF all bits of the result are Clear

Replaces the contents of M or ACCX with its one's
complement (also called the logical complement).
The carry flag is set for 6800 compatibility.

MEMORY ADDRESSING MODES:

COMMENTS:

Accumulator
Direct
Indexed
Extended

When operating on unsigned values, only BEQ and BNE branches
can be expected to behave properly. When operating on two's
complement values, all signed branches are available.



CWAI Clear and Wait for Interrupt

SOURCE FORM: CWAI #3$XX E F H I N £ v } c \

LA

OPERATION: CCR < CCR A MI (Possibly clear masks)
Set E (entire state saved)

SP' « SP - 1, (SP) « PCL FF = enable neither
SP' « SP - 1, (SP) « PCH EF = enable IRQ
SP' © sP - 1, (SP) « USL BF = enable FIRQ
SP' T sP - 1, (SP) « USH AF = enable both
SP' « SP - 1, (sp) <« IVYL

SP' « SP - 1, (SP) <« 1YH

SP' « SP - 1, (SP) « IXL

SP' « SP - 1, (SP) « IXH

SP' « SP - 1, (SP) « DPR

SP' « SP - 1, (SP) « ACCB

SP' « SP - 1, (SP) « ACCA

SP' « 3P - 1, (SP) <« CCR

CONDITION CODES: Possibly Cleared by the immediate byte.

DESCRIPTION:
The CWAI instruction ANDs an immediate byte with the condition
code register which may clear dinterrupt mask bit(s), stacks the
entire machine state on the hardware stack then looks for an inter-
rupt. When a (non-masked) interrupt occurs, no further machine
state will be saved before vectoring to the interrupt handling

routine. This instruction replaced the 6800's CLI WAI sequence , but

does not tri-state the buses.
ADDRESSING MODE: Memory Immediate

COMMENTS:

An FIRQ interrupt may enter its interrupt handler with fts
entire machine state saved. The RTI will automatically return

the entire machine state after testing the E bit of the re-
covered CCR. '



DA

SOURCE FORM:

OPERATION:

Decimal Addition Adjust

DAA

ACCA' <« ACCA + CF(MSN):CF(LSN)
where CF is a Correction Factor, as follows:

The C.F. for each nybble (BCD digit) is determined

separately, and is either 6 or O.
Least Significant Nybble
CF(LSN) = 6 IFF 1) H =1
or 2) LSN
Most Significant Nybble
CF(MSN) = 6 IFF 1) C =1
or 2) MSN > 9
or 3) MSN > 8 and LSN > 9

v
(Y]

CONDITION CODES:

H:

O < N =

Not
Set
Set
Not
Set
or

DESCRIPTION:
The sequence of a single-byte add instruction on ACCA
ADDA or ADCA) and a following DAA instruction results

BCD addition with appropriate carry flag.

affected
IFF MSB of result is Set
IFF all bits of the result are Clear

defined.
if the operation caused a carry from bit 7 in

if the carry flag was Set before the operation.

the ALU,

(either
in a

Both values to be

added must be in proper BCD form (each nybble such that:

0 < nybble < 9).

Multiple-precision additions must add the

carry generated by this DA into the next higher digit during

the add operation immediately prior to the next DA.

ADDRESSING MODE: ACCA



DEC Decrement

SOURCE FORM: DEC Q

OPERATION: M' « M - 1 [i.e., M' « M + FF ]

CONDITION CODES:

H: Not affected

Set IFF bit 7 of result is Set

Set IFF all bits of result areClear

Set IFF the original operand was 10000000
Not affected

Oy < N 2

DESCRIPTION:

Subtract one from the operand. The carry flag
is not affected, thus allowing DEC to be a loop-
counter in multiple-precision computations.

MEMORY ADDRESSING MODES: Accumulator
Direct
Indexed
Extended

COMMENTS :
When operating on unsigned values only BEQ and BNE
branches can be expected to behave consistently. When
operating on two's complement values, all signed branches
are available.



EOR Exclusive OR

SOURCE FORMS: EORA P; EORB P

OPERATION: R' « R & M

CONDITION CODES:

Not affected

Set IFF bit 7 of result is Set

Set IFF all bits of result are Clear
Cleared

Not affected

O << N =Z

DESCRIPTION:

The contents of memory is exclusive - ORed into an 8-bit
register.

REGISTER ADDRESSING MODES: Accumulator

MEMORY ADDRESSING MODES: Direct
Extended
Immediate
Indexed



EXG Exchange Registers

SOURCE FORM: EXG R1, R2

OPERATION: Rl <=+ R2

CONDITION CODES: Not affected (unless one of the registers is CCR)

DESCRIPTION:

Bits 3-0 of the immediate byte of the instruction define
one register, while bits 7-4 define the other, as follows:

0000 = A:B 1000 = A

0001 = X 1001 = B

0010 = Y 1010 = CCR
0011 = US 1011 = DPR
0100 = SP 1100 = Undefined
0101 = PC 1101 = Undefined
0110 = Undefined 1110 = Undefined
0111 = Undefined 1111 = Undefined

Registers may only be exchanged with registers of like size;
i.e., 8-bit with 8-bit, or 16 with 16.

ADDRESSING MODES: Inherent



INC

SOURCE FORM:

OPERATION:

Increment

INC Q

M'" « M+ 1

CONDITION CODE:

Not
Set
Set
Set
Not

O < N Z

DESCRIPTION:
Add one

affected

IFF bit 7 of the result is Set

IFF all bits of the result are Clear
IFF the original operand was 01111111,
affected

to the operand. The carry flag is not affected, thus

allowing INC to be used as a loop-counter in multiple-precision

computations.
MEMORY ADDRESSING MODES: Accumulator

COMMENTS:

Direct
Indexed
Extended

When operating on unsigned values, only the BEQ and BNE branches

can be expected to behave consistently. When operating on two's

complement values, all signed branches are correctly available.



JMP Jump to Effective Address

SOURCE FORM: JMP

OPERATION: PC' « EA

CONDITION CODES: Not affected

DESCRIPTION:

Program control is transferred to the location equivalent
to the effective address.

ADDRESSING MODES: Direct
Indexed
Extended



JSR Jump to Subroutine at Effective Address

SOURCE FORM: JSR

OPERATION: SP' « SP -1, (SP) « PCL
SP' « SP - 1, (SP) « PCH
PC' « EA

Condition Codes Not affected

DESCRIPTION:

Program control is transferred to the Effective Address
after storing the return address on the hardware stack.

ADDRESSING MODES: Direct
Indexed
Extended



LD Load Register from Memory - 8 Bit

SOURCE FORMS: LDA P; LDB P

OPERATION: R' « M

CONDITION CODES:
H: Not affected

N: Set IFF bit 7 of loaded data is Set
Z: Set IFF all bits of loaded data are Clear
V: Cleared
C: Not affected
DESCRIPTION:

Load the contents of the addressed memory into the
register.

REGISTER ADDRESSING MODE: Accumulator

MEMORY ADDRESSING MODES: Immediate
Direct
Indexed
Extended



LD

Load Register from Memory - 16 Bit

SOURCE FORM: LDD P; LDX P; LDY P; LDS P; LDU P

OPEATION:

R' « M:M+1

CONDITION CODES:

H: Not affected
N: Set IFF bit 15 of loaded data is Set
Z: Set IFF all bits of loaded data are Clear
V: Cleared
C: Not affected
DESCRIPTION:

Load the contents of the addressed memory (two consecutive

memory locations) into the 16-bit register.

REGISTER ADDRESSING MODES: Double Accumulator

Pointer (X, Y, S, or U)

MEMORY ADDRESSING MODES: Immediate

Direct
Indexed
Extended



LEA Load Effective Address

SOURCE FORM: LEAX, LEAY, LEAS, LEAU

OPERATION: R' « EA

CONDITION CODES:

Not affected
Not affected
LEAX, LEAY: Set IFF all bits of the result are Clear.

LEAS, LEAU: Not affected
Not affected
Not affected

DESCRIPTION:

Form the effective address to data using the memory
addressing mode. Load that address, not the data itself,
into the pointer register.

LEAX and LEAY affect Z to allow use as counters and for 6800
INX/DEX compatibility. LEAU and LEAS do not affect Z to allow
for cleaning up the stack while returning Z as a parameter to
a calling routine, and for 6800 INS/DES compatibility.

REGISTER ADDRESSING MODE: Pointer (X, Y, S, or U)

MEMORY ADDRESSING MODE: Indexed



LSL Logicdl Shift Left

SOURCE FORM: LSL Q

OPERATION:

CONDITION CODES:

H: Undefined

Set IFF bit 7 of the result is Set

Set IFF all bits of the result are Clear

Loaded with the result of (b7 ® b6) of the original
operand.

C: Loaded with bit 7 of the original operand.

= N =

DESCRIPTION:
Shifts all bits of ACCX or M one place to the left.
Bit 0 is Toaded with a zero. Bit 7 of ACCX or M is
shifted into the carry flag. This is a duplicate
assembly-language mnemonic for the single machine in-
struction ASL.

ADDRESSING MODES: Accumulator
Direct
Indexed
Extended



LSR

Logical Shift Right

SOURCE FORM: LSR Q

OPERATION:

0 » > |C

CONDITION CODES:

H: Not affected

N: Cleared

Z: Set IFF all bits of the result are Clear

V: Not affected

C: Loaded with bit 0 of the original operand
DESCRIPTION:

Performs a logical shift right on the operand. Shifts

a zero into bit 7 and bit 0 into the carry flag.
The 6800 processor also affects the V flag.

ADDRESSING MODES: Accumulator

Direct
Indexed
Extended



MUL

SOURCE FORM:

OPERATION

Multiply Accumulators

MUL

ACCA':ACCB' « ACCA x ACCB

CONDITION CODES:

H: Not
N Not
Z: Set
v Not
C Set
DESCRIPTION:

affected

affected

IFF all bits of the result are Clear
affected

IFF ACCB bit 7 of result is Set.

Multiply the unsigned binary numbers in the accumulators

and place the result in both accumulators. Unsigned

multiply allows multiple - precision operations. The Carry flag
allows rounding the MS byte through the sequence: MUL, ADCA #0.

ADDRESSING MODES: Inherent



NEG

Negate

SOURCE FORM: NEG Q

OPERATION: M' «0 - M i.e., M'« M + 1

CONDITION CODES:

H: Undefined
N Set IFF bit 7 of result is Set
Z Set IFF all bits of result are Clear
V: Set IFF the original operand was 10000000
C: Set IFF the operation did not cause a carry
from bit 7 in the ALU.
DESCRIPTION:

Replaces the operand with its two's complement. The C-flag

represents a borrow and is set inverse to the resulting binary
carry. Note that 8016 is replaced by itself and only in this
case is V Set. The value 0046 is also replaced by itself, and

only in this case is C cleared.

ADDRESSING MODES: Accumulator

Direct
Indexed
Extended

FLAG RESULTS:
(N@V)=1 if § .LT. M (2's comp)

C
Z

]

1 if § .LO. M (unsigned)
1 if § .EQ. M



NOP No Operation

SOURCE FORM: NOP

CONDITION CODES: Not affected

DESCRIPTION:

This is a single-byte instruction that causes only the
program counter to be incremented. No other registers
or memory contents are affected.

ADDRESSING MODES: Inherent



OR Inclusive OR Memory into Register

SOURCE FORMS: ORA P; ORB P

OPERATION: R' « R v M

CONDITION CODES:
H: Not affected

N: Set IFF high order bit of result Set
Z: Set IFF all bits of result are Clear
V: Cleared
C: Not affected

DESCRIPTION:

Performs an "Inclusive OR" operation between the contents
of ACCX and the contents of M and the result is stored
in ACCX.

REGISTER ADDRESS MODE: Accumulator

MEMORY ADDRESS MODES: Immediate
Direct
Indexed
Extended



OR Inclusive OR Memory-Immediate into CCR

SOURCE FORM: ORCC #XX

OPERATION: R <« R v MI

CONDITION CODES: CCR' « CCR v MI

DESCRIPTION:

Performs an "Inclusive OR" operation between the contents
of CCR and the contents of MI, and the result is placed
in CCR. This instruction may be used to Set interrrupt
masks (disable interrupts) or any other flag(s).

REGISTER ADDRESSING MODE: CCR

MEMORY ADDRESSING MODE: Memory Immediate



PSHS Push Registers on the Hardware Stack

SOURCE FORM: PSHS register list

PSHS #Label e r——

PC U Y X op . B

push order ——

OPERATION:
IFF B7 of MI set, then: SP' « SP - 1, (SP) « PCL
SP' « SP - 1, (SP) « PCH
IFF B6 of MI set, then; SP' « SP - 1, (SP) <« USL
SP' « SP - 1, (SP) « USH
IFF B5 of MI set, then: SP' « SP - 1, (SP) « 1IYL
SP' « SP - 1, (SP) <« IYH
IFF B4 of MI set, then: SP' « SP - 1, (SP) <« IXL
SP' « SP - 1, (SP) « IXH
IFF B3 of MI set, then: SP' « SP - 1, (SP) <« DPR
IFF B2 of MI set, then: SP' « SP - 1, (SP) <« ACCB
IFF Bl of MI set, then: SP' « SP - 1, (SP) « ACCA
IFF BO of MI set, then: SP' « SP - 1, (SP) « CCR

CONDITION CODES: Not affected

DESCRIPTION:

Any, all, any subset, or none of the MPU registers are
pushed onto the hardware stack, (excepting only the
hardware stack pointer itself).

MEMORY ADDRESSING MODE: Memory Immediate



PSHU

SOURCE FORM:

OPERATION:

IFF

IFF

IFF

IFF

IFF

IFF

IFF
IFF

B7

B6

B5

B4

B3

B2

B1
BO

Push Registers on the User Stack

of

of

of

of

of

of

of
of

PSHU register Tist
PSHU #LABEL

MI

MI

MI

MI

MI

MI

MI
MI

CONDITION CODES:

DESCRIPTION:

set,

set,

set,

set,

set,

set,

set,
set,

Not affected

then:

then:

then:

then:

then:

then:

then:
then:

pcl s | v | x ‘ Dp I B
push order ——ver—>

US' « US - 1, (US) « PCL
US' « US - 1, (US) « PCH
US' « US - 1, (US) « SPL
Us* < US - 1, (US) <« SPH
US' « US - 1, (US) « IVL
US' « US - 1, (US) <« IYH
Us' < us - 1, (US) < IXL
Us* « US - 1, (US) <« IXH
US' « US - 1, (US) « DPR
US' « US - 1, (US) « ACCB
US' < US - 1, (US) « ACCA
US' < US - 1, (US) « CCR

<~£“§.ELMEE_J

i

Any, all, any subset, or none of the MPU registers are

pushed onto the user stack (excepting only the user

stack pointer itself).

MEMORY ADDRESSING MODE:

Memory Immediate



PULS Pull Registers from the Hardware Stack

SOURCE FORM: PULS register Tlist

PULS #LABEL

. é 1

OPERATION: ) < pull order
IFF BO of MI set, then: CCR' <« (SP), SP'<« SP

IFF B1 of MI set, then: ACCA'« (SP), SP'< SP

IFF B2 of MI set, then: ACCB'« (SP), SP'« SP

IFF B3 of MI set, then: DPR' <« (SP), SP'« SP

IFF B4 of Mi set, then: IXH' < (SP), SP'« SP
(SP), SP'<« SP

IFF BS of MI set, then: IYH' « (SP), SP'<« SP
(SP), SP'<« SP

IFF B6 of MI set, then: USH' <« (SP), SP'« SP

USL' « (SP), SP'« SP

IFF B7 of MI set, then: PCH' « (SP), SP'« SP
PCL' « (SP), SP'« SP

+ + + 4+ + + + + + + + +
——t ot o et med emd amed ed | med emdd aeed e

CONDITION CODES:

May be pulled from stack, otherwise unaffected.

DESCRIPTION:

Any, all, any subset, or none of the MPU registers are
pulled from the hardware stack, (excepting only the
hardware stack pointer itself). A single register may be
"PULLED" with condition-flags set by loading auto-increment
from stack (EX: LDA, S+).

MEMORY ADDRESSING MODE: Memory Immediate




PULU Pull Registers from the User Stack

SOURCE FORM: PULU register list
PULU #LABEL

) T 1 7 ;
Pl s | Yl x 0P| B
; é Y S
OPERATION: <— pull order
IFF BO of MI set, then: CCR' « (US), US « US + 1
IFF B1 of MI set, then: ACCA'« (US), US <« US + 1
IFF B2 of MI set, then: ACCB'« (US), US' _ US + 1
IFF B3 of MI set, then: DPR' « (US), US <« US + 1
IFF B4 of MI set, then: IXH' « (US), US <« US + 1
IXL' « (US), US' « US + 1
IFF B5 of MI set, then: IYH' « (US), US « US + 1
IYL' « (US), US « US + 1
IFF B6 of MI set, then: SPH' « (US), US <« US + 1
SPL' « (US), US « US + 1
IFF B7 of MI set, then: PCH' « (US), US <« US + 1

PCL' <« (US), US' « US

+
—t

CONDITION CODES:

May be pulled from stack, otherwise unaffected.

DESCRIPTION:

Any all, any subset, or none of the MPU registers are
pulled from the user stack (excepting only the user
stack pointer itself). A single register may be "PULLED"
with condition-flags set by doing an auto-increment load
from the stack (EX: LDX, U++).

MEMORY ADDRESSING MODE: Memory Immediate




ROL Rotate Left

SOURCE FORM: ROL Q

OPERATION:

by — by
C' « by, by'u..by' « b

CONDITION CODES:
H: Not affected
N Set IFF bit 7 of the result is Set
7: Set IFF all bits of the result are Clear
v Loaded with the result of (b7 8 b6) of the orginal
operand.
C: Loaded with bit 7 of the original operand

DESCRIPTION:

Rotate all bits of the operand one place left through
the carry flag; this is a nine-bit rotation.

ADDRESSING MODES: Accumulator
Direct
Indexed
Extended



ROR

Rotate Right

SOURCE FORM: ROR Q

OPERATION:

CONDITION CODES:

H: Not affected

N Set IFF bit 7 of result is Set

Z: Set IFF all bits of result are Clear

V: Not affected

C Loaded with bit 0 of the previous operand
DESCRIPTION:

Rotates all bits of the operand right one place through

the carry flag; this is a nine-bit rotation. The 6800
processor also affects the V flag.

ADDRESSING MODES: Accumulator

Direct
Indexed
Extended



RTI Return from Interrupt

SOURCE FORM: RTI

OPERATION: CCR' <« (SP), SP' « SP + 1

+
+

IFF CCR bit E is SET then: ACCA' (sp), sp! SP
ACCB' (SP), SP' « SP
DPR* <« (SP), SP' « SP
IXH' <« (SP), SP' SP
IXL' <« (SP), SP' <« SP
IYH' <« (SP), SP' « SP
IYL' <« (SP), SP' « SP
USH' <« (SP), SP' « SP

4

4

+ + + + + + + + + o+ o+
—t meed  emed emmd emd et eed eed | ] eed e

UsL' <« (SP), SP' « SP
PCH' <« (SP), SP' <« SP
PCL' <« (SP), SP' « SP

IFF CCR bit E is CLEAR then:
PCH' <« (SP), SP' « SP
PCL' <« (SP), SP' <« SP + 1

+
—r

CONDITION CODES: Recovered from stack

DESCRIPTION:

The saved machine state is recovered from the hardware stack
and control is returned to the interrupted program. If the
recovered E bit is CLEAR, it indicates that only a subset

of the machine state was saved (return address and condition
codes) and only that subset is to be recovered.

ADDRESSING MODE: Inherent



RTS Return from Subroutine

SOURCE FORM: RTS

OPERATION: PCH' « (SP), SP' « SP + 1
PCL' « (SP), SP' « SP + 1

CONDITION CODES: Not affected

DESCRIPTION:

Program control is returned from the subroutine to the
calling program. The return address is pulled from the
stack.

ADDRESSING MODE: Inherent



SBC Subtract with Borrow

SOURCE FORMS: SBCA P; SBCB P

OPERATION: R' « R-M - C [i.e., R" « R+ M + C]

CONDITION CODES:
H: Undefined
N: Set IFF bit 7 of the result if Set
Z: Set IFF all bits of the result are Clear
v

Set IFF the operation causes an 8-bit two's complement

overflow

C: Set IFF the operation did not cause a carry from bit 7

in the ALU

DESCRIPTION:

Subtracts the contents of M and the borrow (in the carry flag)
from the contents of an 8-bit register, and places the result

in that register. The C flag represents a borrow

set inverse to the resulting binary carry.

REGISTER ADDRESSIN% MODE: Accumulator

MEMORY ADDRESSING MODES: Immediate
Direct
Indexed
Extended

and is



SEX Sign Extended

SOURCE FORM: SEX

OPERATION: If bit 7 of ACCB is set then ACCA' <« FFi6

else ACCA' <« 0016

CONDITION CODES:
H: Not affected
N: Set IFF the MSB of the result is Set
Z: Set IFF all bits of ACCD are Clear
Vv Not affected
C

Not affected

DESCRIPTION:
This instruction transforms a two's complement eight-bit
value in ACCB into a two's complement sixteen-bit value
in the double accumulator.

ADDRESSING: Inherent



ST Store Register Into Memory - 8 Bits

SOURCE FORM: STA P; STB P

OPERATION: M' « R

CONDITION CODES:
H: Not affected

N: Set IFF bit 7 of stored data was Set
Z: Set IFF all bits of stored data are Clear
V: Cleared
C: Not affected
DESCRIPTION:

Writes the contents of an MPU register into a memory
location.

REGISTER ADDRESSING MODES: Accumulator

MEMORY ADDRESSING MODES:
Direct
Indexed
Extended



ST Store Register Into Memory - 16 Bit

SOURCE FORM: STD P; STX P; STY P; STS P; STU P
OPERATION: M:M+1' « R

CONDITION CODES:
H: Not affected
N Set IFF bit 15 of stored data was Set
Z: Set IFF all bits of stored data are Clear
V: Cleared
C Not affected

DESCRIPTION:

Write the 16 bit register into consecutive memory locations

REGISTER ADDRESSING MODES: Double Accumulator
Pointer (X, Y, S, or U)

MEMORY ADDRESSING MODES:
Direct
Indexed
Extended



SUB Subtract Memory from Register - 8 Bit

SOURCE FORMS: SUBA P; SUBB P
OPERATION: R'«+ R - M [i.e., R" « R+ M + 1]

CONDITION CODES:

H: Undefined

N: Set IFF bit 7 of the result is Set

Z: Set IFF all bits of the result are Clear

V: Set IFF the operation caused an 8-bit two's complement
overflow

C: Set IFF the operation did not cause a carry from bit
7 in the ALU

DESCRIPTION:

Subtracts the value in M from the contents of an 8-bit
register. The C flag represents a borrow and is set
inverse to the resulting binary carry.

REGISTER ADDRESSING MODE: Accumulator

FLAG RESULTS:

(N®V) =1 if R .LT. M (2's comp)
C =11if R .LO. M (unsigned)
Z =14f R .EQ. M

MEMORY ADDRESSING MODES: Immediate
Direct
Indexed
Extended



SUB Subtract Memory from Register - 16 Bit

SOURCE FORM: SUBD P

OPERATION: R' « R - M:M+1 [i.e., R' « R + M:M+T + 1]

CONDITION CODES:
H: Unaffected
N: Set IFF bit 15 of result is Set
Z: Set IFF all bits of result are Clear
v Set IFF the operation caused a 16-bit two's
complement overflow.
C: Set IFF the operation on the MS byte did not cause

a carry from bit 7 in the ALU

DESCRIPTION:
This information subtracts the value in M:M+1 from the 16-bit
accumulator. The C flag represents a borrow and is set
inverse to the resulting binary carry.

REGISTER ADDRESSING MODE: Double Accumulator

MEMORY ADDRESSING MODES: Immediate
Direct
Indexed
Extended

SUBTRACT SETS:
(Nev)= 1 if R .LT. M (2's comp)
C 1 if R .LO. M (unsigned)
Z=1if R .EQ. M



SWI Software Interrupt

SOURCE FORM: SWI

OPERATION: Set (entire state will be saved)
SP' « SP - 1, (SP) « PCL
SP' « SP - 1, (SP) « PCH

m

SP' « SP - 1, (SP) « USL
SP' « SP -1, (SP) <« USH
SP' « SP - 1, (SP) <« IYL
SP' « SP - 1, (SP) <« IYH
SP'" « SP - 1, (SP) « IXL
SP'" « SP - 1, (SP) « IXH
SP' « SP - 1, (SP) « DPR
SP' « SP - 1, (SP) « ACCB
SP' « SP - 1, (SP) « ACCA
SP' « SP - 1, (SP) « CCR
Set I, F (mask interrupts)

PC' « (FFFA): (FFFB)
CONDITION CODES: Not affected

DESCRIPTION:

A1l of the MPU registers are pushed onto the hardware
stack (excepting only the hardware stack pointer itself),
and control is transferred through the SWI vector.

ADDRESSING MODE: Absolute Indirect



SWIZ2 Software Interrupt 2

SOURCE FORM: SWIZ

OPERATION: Set E (entire state saved)
SP' « SP - 1, (SP) « PCL

SP' « SP - 1, (SP) « PCH

SP' « SP - 1, (SP) « USL

SP' « SP - 1, (SP) « USH

SP' « SP - 1, (SP) <« IYL

SP' « SP - 1, (SP) « IYH

SP' « SP - 1, (SP) <« IXL

SP' « SP - 1, (SP) « IXH

SP' « SP - 1, (SP) <« DPR

SP' « SP - 1, (SP) <« ACCB
SP' « SP - 1, (SP) « ACCA
SP' « SP - 1, (SP) <« CCR

PC' « (FFF4):(FFF5)

CONDITION CODES: Not affected

DESCRIPTION:

A11 of the MPU registers are pushed onto the hardware
stack (excepting only the hardware stack pointer itself),
and control is transferred through the SWI2 vector. SWIZ2
is available to the end user and must not be used in
packaged software.

ADDRESSING MODE: Absolute Indirect



SWI3 Software Interrupt

SOURCE FORM: SWI3

OPERATION: Set E (entire state will be saved)
SP' « SP - 1, (SP) « PCL

SP' « SP - 1, (SP) « PCH

SP' « SP - 1, (SP) <« USL

SP' « SP - 1, (SP) <« USH

SP' « SP - 1, (SP) <« IYL

SP' « SP - 1, (SP) « IVYH

SP' « SP - 1, (SP) « IXL

SP' « SP - 1, (SP) <« IXH

SP' « SP - 1, (SP) « DPR

SP' « SP - 1, (SP) « ACCB
SP' « SP - 1, (SP) « ACCA
SP' « SP - 1, (SP) <« CCR

PC' <« (FFF2):(FFF3)

CONDITION CODES: Not affected

DESCRIPTION:

A1l of the MPU registers are pushed onto the hardware
stack (excepting only the hardware stack pointer itself),
and control is transferred through the SWI3 vector.

ADDRESSING MODE: Absolute Indirect



SYNC Synchronize to External Event

SOURCE FORM: SYNC
OPERATION: Stop processing instructions

CONDITION CODES: Unaffected

DESCRIPTION:
When a SYNC instruction is executed, the MPU enters a SYNCING
state, stops processing instructions, and waits on an interrupt.
When an interrupt occurs, the SYNCING state is cleared and
processing continues. IF the interrupt is enabled, and the
interrupt lasts 3 cycles or more, the processor will perform
the interrupt routine. If the interrupt is masked or is shorter
than 3 cycles long, the processor simply continues to the next
instruction (without stacking registers). While SYNCING, the
address and data buses are tri-state.

ADDRESSING MODES: Inherent

COMMENTS:
This instruction provides software synchronization with a
hardware process. Consider the high-speed acquisition of data:

!
FAST SYNEef WAIT FOR DATA interrupt!
LDA DISC DATA FROM DISC AND CLEAR INTERRUPT
STA s X+ PUT IN BUFFER
DECB COUNT IT, DONE?

BNE FAST GO AGAIN IF NOT.
?

The SYNCING state is cleared by any interrupt, and any enabled
interrupt will probably destroy the transfer (this may be used
to provide MPU response to an emergency condition).

The same connection used for interrupt-dfiven 1/0 service may thus be used
for high-speed data transfers by setting the interrupt mask and using SYNC.



TFR Transfer Register to Register

SOURCE FORM: TFR R]’RZ

OPERATION: R2 “« R]

CONDITION CODES: Not affected (Unless R2 = CCR)

DESCRIPTION:

Bits 7-4 of the immediate byte of the instruction define
the source register, while bits 3-0 define the destination
register, as follows:

0000 = A:B 1000 = A

0001 = X 1001 = B

0010 =Y 1010 = CCR

0011 = US 1011 = DPR

0100 = SP 1100 = Undefined
0101 = PC 1101 = Undefined
0110 = Undefined 1110 = Undefined
0111 = Undefined 1111 = Undefined

Registers may only be transferred between registers of
like size; i.e., 8-bit to 8-bit, and 16 to 16.

ADDRESSING MODES: Inherent



TST

Test

SOURCE FORM: TST Q

OPERATION: TEMP « M - 0

CONDITION CODES:

H: Not affected
N: Set IFF bit 7 of the result is Set
Z: Set IFF all bits of the result are Clear
V: Cleared
C: Not affected
DESCRIPTION:

Set condition code flags N and Z according to the contents
of M, and clear the V flag. The 6800 processor clears
the C flag.

MEMORY ADDRESSING MODES: Accumulator

COMMENTS:

Direct
Indexed
Extended

The TST instruction provides only minimum information when test-

ing unsigned values; since no unsigned value is less than zero,
BLO and BLS have no utility. While BHI could be used after TST, it
provides exactly the same control as BNE, which is preferred. The
signed branches are available.



HARDWARE INSTRUCTION: FIRQ Fast Interrupt Request

OPERATION: IFF F bit CLEAR, then: SP' « SP - 1, (SP) « PCL
SP' « SP - 1, (SP) « PCH
Clear E (subset state is saved)
SP' « SP - 1, (SP) « CCR
Set F, I (mask further interrupts)
PC' « (FFF6): (FFF7)

CONDITION CODES: Not affected

DESCRIPTION:

A low level on the FIRQ input with the F bit clear causes

this interrupt sequence to occur at the end of the current
instruction. The program counter and condition code register
are pushed onto the hardware stack. Program control is
transferred through the FIRQ vector. An RTI returns to the
original task. It is possible to enter an FIRQ handler with the
entire state saved if the FIRQ occurs after CWAI.

ADDRESSING MODE: Absolute Indirect

COMMENTS:

An IRQ interrupt, having lower priority then the FIRQ,

is prevented from interrupting the FIRQ handling routine by
automatic setting of the I flag. This mask bit could then be
reset if priority was not desired. The FIRQ allows operations

on memory, TST, INC, DEC, etc. without the overhead of saving
the entire machine state on the stack.



HARDWARE INSTRUCTION: IRQ Interrupt Request

OPERATION: IFF I bit CLEAR, then: SP'
SpP!
SP!
Sp!
SP!
Sp!
Sp!
SP!
SpP'
SP!
sp!
Set
SP!
Set
pPC'

CONDITION CODES: Not affected

DESCRIPTION:

<SP -1, (SP) « PCL
« SP - 1, (SP) « FCH
« SP - 1, (SP) « USL
<« SP - 1, (SP) « USH
<« SP -1, (SP) « IYL
<« SP - 1, (SP) « IYH
« SP -1, (SP) « IXL
<« SP -1, (SP) « IXH
<« SP - 1, (SP) <« DPR
<« SP - 1, (SP) « ACCB

A = 4 om ot

SP - 1, (SP) « ACCA

(entire state saved)

SP - 1, (SP) <« CCR

(mask further IRQ interrupts)
(FFF8):(FFF9)

If the IRQ mask bit I is clear, a low level on the IRQ input
causes this interrupt sequence to occur at the end of the

current instruction. Control is returned to the interrupted

program via an RTI. An FIRO may interrupt an IRQ handling

routine and be recognizéd anytime after the IRQ vector is taken.

ADDRESSING MODE: Absolute Indirect



HARDWARE INSTRUCTION: NMI Non-Maskable Interrupt

OPERATION: SP' « SP - 1, (SP) <« PCL
SP' « SP - 1, (SP) « PCH
SP' « SP - 1, (SP) « USL
SP' « SP - 1, (SP) « USH
SP' « SP - 1, (SP) <« IYL
SP' « SP - 1, (SP) « IVH
SP' « SP - 1, (SP) « IXL
SP' <« SP - 1, (SP) « IXH
SP' « SP - 1, (SP) « DPR
SP' « SP - 1, (SP) « ACCB

SP' « SP - 1, (SP) « ACCA
Set E (entire state save)
SP' « SP - 1, (SP) « CCR
SetI, F (mask interrupts)
PC' « (FFFC):(FFFD)

CONDITION CODES: Not affected

DESCRIPTION:
A negative edge on the NMI input causes all of the MPU registers
(except the hardware stack pointer SP) to be pushed onto the
hardware stack, starting at the end of the current instruction.
Program control is transferred through the NMI vector. Suc-
cessive negative edges on the NMI input will cause successive
NMI operations. The NMI operation is internally blocked by
RESET, any NMI-edge will be latched, and the operation will
occur after the first load into the stack pointer (LDS; TFR r,s;
EXG r,s; etc.).

ADDRESSING MODE: Absolute Indirect



HARDWARE INSTRUCTION: RESTART

OPERATION: CCR' « X1XIXXXX
DPR' < 007¢
PC' < (FFFE):(FFFF)

CONDITION CODES: Not affected

DESCRIPTION:

The MPU is initialized (required after power-on) to start
program execution.

ADDRESSING MODE: Absolute Indirect



6809 STACKING ORDER

FFFF
a:’ =
PC PUSH ORDER
19,5 PCw v
U/S w
8,5 u/sS w
Y.
(A Y w
X
4,5 X
I,S DP
2,8 B A
l,$ A PULL FROM STACK
SP (e US)—> O,S cc - ToP OF STACK
L 1 PUSH onTo  STACK
T T v
0000

Figure 7: 6809 Push/Pull and Interrupt Stacking Order.



3.5 HARDWARE INCOMPATABILITIES WITH 6800/6801/6802

1. VMA is not used on the on-chip clock 6809; the processor sends
FFFF16 and R/W=1 when no valid access is occurring. This
dummy access can be differentiated from a valid RESET access
by using the IACK signal.

Since the MREADY line is inhibited internally during dummy
access cycles, a slow ROM located in high memory will not
extend dummy cycles.

2. While 6800 required a DBE signal (Data Bus Enable and
strobe), 6801/6802/6809 generate DBE internally.

3.6 SOFTWARE INCOMPATABILITIES WITH 6800/6801/6802

1. The new stacking order on the 6809 exchanges the order
of ACCA and ACCB; this allows ACCA to stack as the MS
byte of the pair.

2. The new stacking order on the 6809 invalidates previous
6800 code which displayed X or PC from the stack.

3. Additional stacking length on the 6809 stacks five
more bytes for each NMI, IRQ, or SWI when compared to
6800/6801/6802.

4. The 6809 stack pointer points directly at the last
item placed on the stack, instead of the location
before the last item as in 6800/6801/6802. In general
this is not a problem since the most-usual method of
pointing at the stack in the 6800/6801/6802 is to
execute a TSX. The TSX increments the value during



10.

the transfer, making X point directly at the last

item on the stack.

The stack pointer may thus be initialized one location
higher on the 6809 than in the 6800/6801/6802;
similarly, comparison values may need to be one location
higher.

Any 6800/6801 program which does all stack manipulation
through X (i.e., LDX #CAT, TXS instead of LDS #CAT) will
have an exactly-correct stack translation when assembled
for 6809.

Instruction timings in 6809 will, in general, be different

from other 6800-family processors.

The 6809 uses the two high-order condition code register
bits. Consequently, these will not, in general, appear
as 1's as on the 6800/6801/6802.

The 6809 MUL instruction sets the Z-flag (if appropriate);
the 6801 MUL does not.

The 6809 TST instruction does not affect the Z-flag, while
6800/6801/6802 TST does clear the C-flag.

The 6809 right shifts (ASR, LSR, ROR) do not affect V;
1
the 6800/6801/6802 shifts set V = b7 ® b6’

The 6801 double-length shift instructions (ASLD, LSRD)
are not exactly emulated by the 6800/6802/6809 sequences
ASLB, ROLA; and LSRA, ROLB. In particular, the Z-flag
represents only the last 8-bit result, and not the 16-
bit quantity.



11.

12.

13.

The 6809 H-flag is not defined as having any particular
state after subtract-like operations (CMP, NEG, SBC, SUB);
the 6800/6801/6802 clear the H-flag under these conditions.

The 6800/6802 CPX instruction compared M§ byte than

LS byte; consequently only the Z-flag was set correctly
for branching. The 6801/6809 instructions (CPX/CMPX)
set all flags correctly.

The 6809 instruction LEA may or may not affect the
Z-flag depending upon which register is being loaded;
LEAX and LEAY do affect the Z-flag, while LEAS and LEAU
do not. Thus, the User Stack does not exactly emulate

the index registers in this respect.



10.

the transfer, making X point directly at the last

item on the stack.

The stack pointer may thus be initialized one location
higher on the 6809 than in the 6800/6801/6802;
similarly, comparison values may need to be one location
higher.

Any 6800/6801 program which does all stack manipulation
through X (i.e., LDX #CAT, TXS instead of LDS #CAT) will
have an exactly-correct stack translation when assembled
for 68009.

Instruction timings in 6809 will, in general, be different

from other 6800-family processors.

The 6809 uses the two high-order condition code register
bits. Consequently, these will not, in general, appear
as 1's as on the 6800/6801/6802.

The 6809 MUL instruction sets the Z-flag (if appropriate);
the 6801 MUL does not.

The 6809 TST instruction does not affect the Z-flag, while
6800/6801/6802 TST does clear the C-flag.

The 6809 right shifts (ASR, LSR, ROR) do not affect V;
1
the 6800/6801/6802 shifts set V = b7 ® b6'

The 6801 double-length shift instructions (ASLD, LSRD)
are not exactly emulated by the 6800/6802/6809 sequences
ASLB, ROLA; and LSRA, ROLB. In particular, the Z-flag
represents only the last 8-bit result, and not the 16-
bit quantity.



3.7 MULTI-PROCESS SYNCHRONIZATION

ASR used as "Test and Clear"
ST used as "Unbusy"

INSTRUCTIONS BEFORE ' AFTER
ASR 06 06 0 0 0 o o0 (¢}>C 00 0 0 00 0 O !
"not busy" "busy" "control"
ASR 6 0 0 0 0 0 o0 o0 {>»C 0 0 0 0 0 0 0 OpP>0
"busy" "busy" "no control"
LDA #1
STA 6 06 0 0 0 0 0 o C 0 o 0 0 0 0 o0 | C

"busy" "not busy"



3.8 6809 ASSEMBLY-LANGUAGE SYNTAX

ABX ABX

ADC ADCA P, ADCB

ADD ADDA P; ADDB P; ADDD P
AND ANDA P; ANDB P; ANDCC #XX
ASL ASL Q

ASR ASR Q

BCC BCC dd; LBCC DDDD
BCS BCS dd; LBCS DDDD
BEQ BEQ dd; LBEQ DDDD
BGE BGE dd; LBGE DDDD
BGT BGT dd; LBGT DDDD
BHI BHI dd; LBHI DDDD
BHS BHS dd; LBHS DDDD
BIT BITA P; BITB P
BLE BLE dd; LBLE DDDD
BLO BLO dd; LBLO DDDD
BLS BLS dd; LBLS DDDD
BLT BLT dd; LBLT DDDD
BMI BMI dd; LBMI DDDD
BNE BNE dd; LBNE DDDD
BPL BPL dd; LBPL DDDD
BRA BRA dd; LBRA DDDD
BRN BRN dd; LBRN DDDD
BSR BSR dd; LBSR DDDD
BVC BVC dd; LBVC DDDD
BVS BVS dd; LBVS DDDD
CLR CLR

CMP CMPA
CMPX

Q
P; CMPB P; CMPD P
P
CMPU P
Q
#

H CMPY Py CMPS P

COM COM
CWAI CWAI



3.8

(Continued)

DA

DEC
EOR
EXG
INC
JMP
JSR
LD

LEA

LSL
LSR
MUL
NEG
NOP
OR

PUL
PSH
ROL
ROR
RTI
RTS
SBC
SEX
ST

SUB
SWI
SWIZ2
SWI3

R{
R{

»R}
»R}

EORB P

LDB Ps LDD
LDY P LDS
LEAY IN; LEAU
ORB P ORCC

;  PULU R{,R}
;  PSHU R{,R}

SBCB P

STB Ps STD
STY P; STS
SUBB P; SUBD

IN

#XX
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(Continued)

SYNC
TFR
TST

SNYC
TFR
TST



3.9

MC6800 - Equivalent Instructions

MC6800 mnemonics which are not included in the MC6809
assembly-language are handled by automatically trans-
lating the 6800 instruction into functionally-equivalent
6809 instructions, as described:

6800 Instruction 6809 Equivalent

ABA PSHS B; ADDA ,S+
CBA PSHS B; CMPA ,S+
CLC ANDCC #$FE

CLI ANDCC #$EF

CLv ANDCC #$FD

CPX CMPX P

DES LEAS -1,S

DEX LEAX -1,X

INS LEAS 1,S

INX LEAX 1,X

LDAA LDA

LDAB LDB

ORAA ORA

ORAB ORB

PSHA PSHS A

PSHB PSHS B

PULA PULS A

PULB PULS B

SBA PSHS B; SUBA ,S+
SEC ORCC #$01

SEI ORCC #$10

SEV ORCC #$02

STAA STA

STAB STB
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(Continued)

6800 Instruction

6809 Equivalent

TAB
TAP
TBA
TPA
TSX
TXS
WAI

*

TFR A,B; TST A
TFR A,CC

TFR B,A; TST A
TFR CC,A

TFR S,X

TFR X,S
*CWAI #S$FF

The interrupt structure on the 6809 has been extensively
analyzed and improved compared to the 6800. While with the
6800 it was useful to execute the sequence: CLI, WAI; the
6809 logically-equivalent sequence (ANDCC #$EF, CWAI #$FF)
would allow on IRQ interrupt to occur after the ANDCC
instruction. If this is not desired, the 6809 instruction
CWAI #$EF should be used to replace the logically-equivalent
sequence.



6809 op code map and cycle counts. The numbers by each op code indicate the number of machine cycles required to
execute each instruction. When the number contains an | (eg: 4 + 1), an additional number of machine cycles equaling | may be
required The presence of two numbers, with the second one in parentheses, indicates that the instruction imvolies
a branch. The larger number applies if the branch is taken. The notation first page/second page/third page has the follow ing
meaning: first page op codes have only one byte of op code (eg: load A immediate has an op code of hexadecimal 86). All page
2 op codes are preceded by a page op code of hexadecimal 10 (eg: the op code for CMPD immediate is hexadecimal 1083~
two bytes). Similarly third page op codes are preceded by a hexadecimal 11. A CMPU immediate is 1183. Some instructions are
given two mnemonics as a programmer converiience {eg: ASL and LSL are equivalent). Notice that the long branch op codes
LBRA end LBSR were brought onto the first page for increased code efficiency.

Most Significant Four Bits

DIR REL ACCA{ ACCB| IND | EXT| MM | DIR | iND | EXT | iMm | DR | IND | EXT
0000 | 0001 0010 0011 {0100} 0101 | 0110 | 0111 1000 | 1001 | 1010 | 1011 | 1100 | 1101 | 1110 | 1111
0 1 2 3 4 5 6 7 8 ] A B c D E F
6 3BRA 4 2 2 6+1 b 2 a 4+l 5 2 4 44 5
0000 o) NEG | PAGE2 LEAX NEG SUBA suBB C
3BRN/ 4+ F] 4 4+ B 2 4 ey 5 |
0001 1 PAGE3| SLBRN LEAY CMPA cmPB 1
2 3 BHY/ 4+l 2 4 A+i 5 2 4 a+i 5 |
0810 2| T | NOP 5(6ILBHI | LEAS sBCa SBCB 2
s 2 38LS/ 4+ 2 2 6+ 7 |4.66+1,7/577+418/577+418 4 6 641 7 |
0011 3| COM |SYNC | B(BILBLS | LEAU CoMm SUBD cmpp/  CMPU ADDD 3
P 3 BHS B+1/by 2 2 6+ 7 2 4 a+ 5 2 4 P 5 |
0100 4| LSR 5(6)(BCC) | PSHS LSR ANDA ANDB a ‘
3BLO 5+1/by 2 4 4+ ) 2 4 4+ 5 !
o101 § [ 5(6MBCS) | PULS BiTA 8178 5
£ 6 5 3 BNE/ selfby | 2 2 e+ 7 2 4 4+ 5 2 4 P 5
® 10110 6] ROR | LBRA | S(6LBNE | PSHU ROR LDA LDB 6
3 [ o 3 8EQ/ S5+1/by 2 2 6+l 7 4 4+ [ 4 a4 5
« 8111 7| ASR | LBSR | st6)LBEQ| PULU ASR STA sY8 7
g § ASL 38VC/ 2 2 6+1 7 2 4 a+l ) 2 4 44| 5
1000 8} (LSL) S@ILBVC | T ASL(LSL) EORA EORB I
} $ 2 3 BVS/ 5 2 2 6+ ? 2 a as [ 2 4 a4} 3
‘ 1001 s{moL |[DAa S5(6)LBVS | RTS ROL ADCA ADCB g
- [ 3 38PL/ 3 2 2 &+ 7 2 4 a4+ 5 2 4 4+ 5 ,
1016 A| DEC |ORCC | si61LBPL | ABX DEC ORA ORB A
3 BMI/ 6/15 2 4 4+ 5 2 4 4+ 5
1011 8 5{6)LBMI | RTI ADDA ADDB ]
[ ] 3 3 BGE/ 20 2 2 6+l 7 |46,6+1,7/577+18B/577+18 3 5 54| 6
1100 C| #C | ANDCC| B{6)LBGE | CWAI INC CMPX / cMpPY / CMPS LDD c
[ 2 3BLT/ 1" 2 2 8+1 7 7 7 2+ 8 5 6+i 6
1101 D/ TST | SEX S(6ILBLY | MUL ST 8sR JSR sSTD D |
3 8 38GT/ IH 4 35646 46,6417 155416 / 466-17
1119 &}l mr |EXG B(6ILBGT MP LDX LDY [€s18) LDS £
] 7 ISLE/ 19/20/20] 2 2 8+ 7 65+16 /856417 5,5+1,6 /6,647
1M Filgun jTPR SIBILBLE | 8wNI/273 CLR §TX |TY 8TuU STS F




G809 INDEXED

ADDRE SSING

NON - INDIRECT INDIRECT
TYPE FORMS SoURCE Post-evyre| & | = | souece [Posr-avre | Au | £
CONSTANT OFFSET NO OFFSET y R |RRooloo] © | O [,Rluaawmo 53 1]o
FROM R 5-BIT OFFSET AyR [ORRnwwn | | O Jdegaplts to 3 -b\T
&-BIT OFFSET ny R [1RROw000| | | | [CnyRI[IRRI1C0O| 4 | ]
|6-BIT OFFSET nyR [IRRo 1001} 4 | 2 [CnyRI|\RRIVoOI]| T 2
ACCUMULATOR A- REGISTER OFFSET | AyR [IRRoONO| | | O |[AyR]I|IRRIONO} 4 | O
OFFSET FRomMm R B- REGISTER OFFSET| ByR JIRRoo101| | | O |L®,R1|IRRI0IGI 4 | O
D-REGISTER OFFSET| PyR irrotou| 4 | 0 |Cp,R1|IRRINGN| 7 |0
AUTO - INCREMENT/ INCREMENT 8Y | | R+ |IRRO000 2 | O not| allowed
- DECREMENT R INCREMENT BY 2 | R++ [IRR0000I] 3 | 0 |[jR+][1rRIC00I[ & | O
DECREMENT BY | | y=R [IRROOO0] 2 | O not| allow¢d
DECREMENT BY 2 3y~ R |iIRrO GO} 3 | O Cy--R1lIRRIGONI| 6 | O
CONSTANT OFFSET 8~ BIT OFFSET ny PCR | IXxa oo | | I |Un, PcR]{IXX11000 | 4 |
FRoM  Pc I - BIT OFFSET ny PCR{IXX0 101 | 5 | 2 |n, PcRY|ixxitt0r | & | 2.
EXTENDED Use hon -indfexe Cnld oo | & | 2
Figure 4: Indexed Addressing Modes. All instructions with indexed

addressing have a base size and number of cycles.

The

A and ; columns indicate the number of additional cycles

and bytes for the particular variation.

The post byte

opcode is the byte that immediately follows the normal

opcode.
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INDEXED-MODE POST-BYTE

POST BYTE REGISTER

BIT ASSIGNMENTS

INDEXED
POST-BYTE REGISTER BIT ADDRESSING
716 {51 441312 110 MODE
11X HX X1tojo}| o0l JR++
T{X | X ofoiofolo g R+
TI1X X 00 110 s-R
11X X X10 111 s--R
11X X X| 0 0|0 JEA=(R + O OFFSET)
11X | X X1 011 0|1 {EA=(R+ ACCB OFFSET)
T{X X | X} 1]/0]0]0 [EA=(R+7BIT OFFSET)
1 X X1 110 | 0]1 |EA=(R+15BIT OFFSET)
1 X X1 111 0|0 {EA=(PC+7 BIT OFFSET)
1 X 111 01 {EA=(PC+15BIT OFFSET)
OIX I X X1 XX X|X |[EA=(R+4 BIT OFFSET)
11X [ X X] 0]1 110 |EA=(R+ACCA OFFSET)
1 X1 110 111 {EA=(R+D OFFSET)
1 11111 111 |EA=( ADDRESS)
ADDRESSING MODE FIELD
I FIELD
FOR P7 = 1: INDIRECT
FOR P7 = 0: SIGN BIT
REGISTER FIELD
00: R = IX
01: R = 1Y
10: R = US
11: R = SP
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LEGAL TRANSFER AND EXCHANGE PATHS

CCR
A\

DPP

" —

< e—

N



3.14 BRANCH GROUPS

Simple Conditional Branches

Condition Complement
BEQ {Z=1} BNE
BMI {N=1} BPL
BCS {C=1} BCC
BVS {Vv=1} BVC

Signed Conditional Branches

Condition Complement
BGT {(N@ V) A Z=1} BLE
BGE {(N® V)=1} BLT
BEQ {Z=1} BNE
BLE {(N® V) v =1} BGT
BLT {(N® V)=1} BGE

Unsigned Conditional Branches*

Condition Complement
BHI {(C A Z)=1} BLS
BHS {C=1} BLO
BEQ {Z=1} BNE
BLS {Cv Z=1} BHI
BLO {C=1} BHS

* Not useful, in general, after INC/DEC, LD/ST, TST/CLR/COM.



ABX

ADCA,ADCB
ADDA,ADDB
ANDA,ANDB

ANDCC
ASLA,ASLB,ASL
ASRA,ASRB,ASR
BITA,BITB
CLRA,CLRB,CLR
CMPA,CMPB
COMA,COMB,COM
DAA
DECA,DECB,DEC
EORA,EORB

EXG R1,R2
INCA,INCB,INC
LDA,LDB
LSLA,LSLB,LSL
LSRA,LSRB,LSR
MUL
NEGA,NEGB,NEG
ORA,ORB

ORCC

PSHS {register}g
PSHU {register}g
PULS {register}d
PULU {register}g
ROLA,ROLB,ROL
RORA,RORB,ROR
SBCA,SBCB
STA,STB
SUBA,SUBB
TSTA,TSTB,TST
TFR R1,R2

Add B-register to X-register unsigned

Add memory to accumulator with carry

Add memory to accumulator

And memory with accumulator

And immediate with condition code register
Arithmetic shift left accumulator or memory
Arithmetic shift right accumulator or memory
Bit test memory with accumulator

Clear accumulator or memory

Compare memory with accumulator

Complement accumulator or memory

Decimal Adjust A-accumulator

Decrement accumulator or memory
Exclusive or memory with accumulator
Exchange R1 with R2

Increment accumulator or memory

Load accumulator from memory

Logical shift left accumulator or memory
Logical shift right accumulator or memory
Unsigned multiply (8 bit x 8 bit = 16 bit)
Negate accumulator or memory

Or memory with accumulator

Or immediate with condition code register
Push register(s) on hardware stack

Push register(s) on user stack

Pull register(s) from hardware stack

Pull register(s) from user stack

Rotate accumulator or memory left

Rotate accumulator or memory right
Subtract memory from accumulator with borrow
Store accumulator to memory

Subtract memory from accumulator

Test accumulator or memory

Transfer register R1 to register R2

FIGURE 1 8-BIT OPERATIONS



ADDD Add to D accumulator

SUBD Subtract from D accumulator
LDD ‘ Load D accumulator

STD Store D accumulator

CMPD Compare D accumulator
LDX,LDY,LDS,LDU Load pointer register
STX,STY,STS,STU Store pointer register

CMPX,CMPY,CMPU,CMPS Compare pointer register
LEAX,LEAY,LEAS,LEAU Load effective address into pointer register
SEX Sign Extend
TFR register,register Transfer register to register
EXG register,register Exchange register to register
PSHS (register)g Push register(s) onto hardware stack
PSHU (register)g Push register(s) onto user stack
PULS (register)% Pull register(s) from hardware stack
(

PULU register)g Pull register(s) from user stack

FIGURE 2 16-BIT OPERATIONS



0,R
[0,R]

JR++
[,R++]

,--R
[,--R]
n,P
[n,P]
A,R
[A,R]
B,R
[B,R]
D,R
[D,R]

FIGURE 3

indexed with zero offset

indexed with zero

auto increment by 1

auto increment by 2

auto increment by 2 indirect

auto decrement by 1

auto decrement by 2

auto decrement by 2 indirect

indexed with signed n
indexed with signed n

indexed
indexed
indexed
indexed
indexed
indexed

with
with
with
with
with
with

accumulator
accumulator
accumulator
accumulator
accumulator
accumulator

A

0O O W m >

INDEXED ADDRESSING MODES

as
as
as
as
as
as

offset indirect

as offset (n=5,8, or 16-bits)
as offset indirect

offset
offset indirect
offset
offset indirect
offset
offset indirect



BCC,LBCC
BCS,LBCS
BEQ,LBEQ
BGE,LBGE
BGT,LBGT
BHI,LBHI
BHS,LBHS
BLE,LBLE
BLO,LBLO
BLS,LBLS
BLT,LBLT
BMI,LBMI
BNE,LBNE
BPL,LBPL
BRA,LBRA
BRN,LBRN
BSR,LBSR
BVC,LBVC
BVS,LBVS

FIGURE 4

Branch
Branch
Branch
Branch
Branch
Branch
Branch
Branch
Branch
Branch
Branch
Branch
Branch
Branch
Branch
Branch
Branch
Branch
Branch

if carry clear

if carry set

if equal

if greater than or equal (signed)
if greater (signed)

if higher (unsigned)

if higher or same (unsigned)

if less than or equal (signed)
if lower (unsigned)

if lower or same (unsigned)

if less than (signed)

if minus

is not equal

if plus

always

never

to subroutine

if overflow clear

if overflow set

RELATIVE SHORT AND LONG BRANCHES



CWAI Clear condition code register bits and wait
for interrupt

NOP No-operation

JMP Jump

JSR Jump to subroutine

RTI Return from interrupt

RTS Return from subroutine

SEX Sign extend B-register into A-register
SWI,SWI2,SWI3 Software interrupts

SYNC Synchronize with interrupt line

FIGURE 5 MISCELLANEOUS INSTRUCTIONS



4.0 SYSTEMS INTERFACING

4.1 INTERRUPTS

Three different classes of prioritized vectored interrupts
are included in the 6809 MPU. In decreasing priority
these are: NMI (Non-Maskable Interrupt), FIRQ (Fast
Interrupt Request), and IRQ (Interrupt Request) and

are more fully defined in the "Hardware Instructions"
section.

Using the processor signal line Interrupt Acknowledge
(IACK) and decoding four bits of the Address Bus, the
interrupt response may be vectored by the interrupting
device to anywhere in the address-space. This techni-
que can be used to greatly expand the number of prior?

itized hardware-vectored interrupts.

The NMI is especially applicable to gaining immediate
(non-inhibitable) MPU response for power-fail, software
dynamic memory refresh, or other non-delayable events.
FIRQ is a maskable fast interrupt which saves only a
return address and condition codes, making it much
faster than NMI or IRQ. IRQ is a maskable interrupt
which saves a complete MPU state.

Two types of external-process synchronization are also
provided by the interrupt system. The CWAI command
saves the entire MPU state, then waits until a non-
inhibited interrupt occurs before vectoring to the
interrupt routine. A SYNC instruction stops the MPU
from executing code until an interrupt is received.

If the interrupt is masked, the MPU simply resumes
execution. If the interrupt is enabled, the interrupt
response is performed.
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mesoe-Me8@9 CROSS-ASSEMBLER
MORBENCH

PAGE

eeeo7
eoees
eoees
peeie
eoo11
peetz
eee13
eoe1id
eee1s
eoete
o117
oee1d
oee13

eeez1
eoezz
eovz3

poezs

eeez?
oeez8
e0ezs
eeo3e
2031
por3Z
oee33

9R035

eeoz

1004
iees

iee?
10en
ieeD
leeF
1012
ie14
ie16

1017

B6
BE
A7
BF
81
27
SE

Z2e

eeeD
51]
e100

ieed
1085
8o
1005
eD
81

FE

nwmmnonawm

S

z.2

BRI NERNRE [ /0 HANDLER 0000 063 0K X 06 3 ¢

3

¥ A SINGLE INPUT INTERRUPT IS ARMED. RECEIVE
¥ AN INTERRUFT, SAVE REGISTERE, INPUT A CHaR,
* CLEAR THE INTERRUPT, PUT THE CHAR IN A&

¥ SOFTHARE BUFFER, INMCREMENT THE BUFFER PTR,

3 TEST FOR END OF LINE, RECOVER REGISTERS,

¥ AND RETURN.

*

X SETUF: NONE

* ToTaL: 7 LN, 16 BY, 62 CY

x

£E33333333333333333333333333333%9

EoL EQU sop ASCII CR
MODEM FCB @
BUFPTR FDB $l0@Q

¥ ASSUME IRG FROM PlA (19 CY)

BEGIN LDA MODEM CLEARS PIA IRQ
LDX BUFFTR GET FPTR
SThA P X+ STORE CHAR
STX BUFFTR UFDATE PTR
CHMFA #EOL END OF LINE?
BEQ EOLGP IF YES, MORE TO DO
RTI ELSE, RETURN

EOLGP BRA E 3
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Meéee-ME802 CROSS-ASSEMBLER
MORBENCH

PAGE

22238
22039
oeedn
0241
R4z
oRe43
eeedq
eee4s
2o04eE
oewr4vs
oee4s
eee4o

02051
o5z
00e53

BOOSS
PROSE
eees7
eees5s
eReS53
eevee

veecz

eeoc4

Qe0ES
0eREE

ee3

1019
1e1B
101E

1020
1ezz
1024
1925
1027
18z2a

1@zC

18ZE
1042

ae
8E
Ce

Al
g
SA
Z6
8E
30

zZo

4/
1e@ZE
28

8@
%1

Fo
eee1
1F

FE

204N

2%
ee

N WM

WWwhwh

Z.2

AXXEXXXXEXE CHARACTER SEARCH ¥XXEEEXEXXX

E 3
¥
¥
*
x
*
*
¥
#*
¥
*

CSRCH

csz

CHAR
BUF

SEARCH & TAELE OF N CHARACTERE FOR & SPECIFIC
CHARACTER. IF FOUND, RETURN THE ADDRESS OF
THE MATCH, ELSE RETURN ZERO. LET N BE 4e,
LET THE SEARCH FAIL.

SETUF: 3 LN, 7 BY, 7 CY
OPERATION: & LN, 12 BY, (14%402)+8=568 CY
TOTAL: 9 LN, 19 BY, 575 CY

(33333333323 33333333 3333333333333 3333

LDa #CHAR CHAR TO FIND

LDX #BUF FTR INTO TABLE
LDE #40 LENGTH OF TaBLE
CHPA X+ SAME CHART?

BEG csz I[F YES, FOINT AT IT
DECB ANMOTHER ONE DOWN
BNE CS1 ALL DONE?

LDX ¥1 TRICKY CLRX

LEAX =-1.,% HENT FAST!

BRA 3

EQU rd

FCB 0’!”"!""!"!"”0

FCB e'f"f”'!f!’l’rllllo
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ME&@QR-ME8RS CROSS-ASSEMBLER 2.2

FAGE ©024 MORBENCH

020eES Exxuxuxexx COMPUTED GO TO XEXEXXEXXX

eoe7eo *

evoe71 % LSB FIRST, TEST A CONTROL BYTE WHICH HaAS
eee72z ¥ HAS EXACTLY ONE BIT TRUE. THE POSITION
oee7r3 * OF THE TRUE BIT DETERMINES HWHICH OF EIGHT
goe74 * TABLE VECTORS IS USED FOR CONTROL-TRANSFER
eee7s X LET B7 BE TRUE.

0ee7e *

eeev7 * SETUP: Z LN, 5 BY., 5 Cy

eooTe 3 OFPERATION: S LN, 8 BY, Z2+(7%8)+7=65 CY
oee73 X TOTAL: 7 LN, 13 BY, 70 CY

egose x

eoeat £33 3333333333333 33333333333233233333°"

eeea3 tesEe 26 ao 2 COMPGO LDA #CONTBY

oees4 1058 BE 1061 3 LDX #TABLE-2 START OF TABLE

eeeas 105B SF Z CLRB

Q@87 105C CB ez z COti ADDBE 2 THO BYTES ~ VECTOR

peeas 1eSE 44 2 LSR#A

eR239 1eSF Z4 FB 3 BCC co1

eove9e 1e61 6E 85 7 JMF [B,X] REGISTER-OFFSET INDIRECT
eeedz gego CONTBY EQU $30

Q0093 1063 1873 TAELE FLDE ERR,ERR,ERR,ERR,ERR,ERR,ERR

00054 1e71 1075 FDE NOERR

PORIS 1073 206 FE 3 ERR ERA *

2eeSe 1e75 zZe FE 3 NOERR BRA ¥
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ME&@O-ME8Q2S CROSS-ASSEMBLER
MORBENCH

PAGE

eee9s
pelee
eeio1
eetez
20103
eeied
eeles
e21ec6
20107
goa1esd
eel1ed
oo11@

eetiz
eei13
eeti14

eeiie
ee117
o118
ee119
eel1ze

eetez

eel1z4
ee1zs
ee1z26
QR1Z7
’ee123
ee1z9
eaise
ee131
ee132

ees

177
1074
107E

1e81
1e83
1285
1087
1@3a

1@ac

1238E
iega
1@AZ
1@AC
12Re
10Co
1eCnh
1eD4
1eDE

8E
108E
CE

EC
E3
ED
ac
26

20

168E
1@Be6
12DE

81
Al
c1
10BE
FS

FE

oo
eees
eete
2e15
@299
veo4
ee8s
eeg4
eoee

wsw

[EVNE R R e

2.2

133333
%
3
3
*x
*
*
*
%
x
*
XKEEXXX

ANBNCN

AN1

TARLEA
TABLEB

TABLEC

xx%%x VECTOR ADDITION / 16-BIT XXEXXEEENEX

PERFORM AN ELEMENT-BY-ELEMENT aADDITION ON
THO VECTORS OF N 18-BIT ELEMENTS EACH.
FLACE THE RESULT IN A DIFFERENT VECTOR.
LET N BE cZeo.

SETUP: 3 LN, 12 BY, 10 CY
OFERATION: 5 LN, 11 BY, 3Z2%x20=840 CY
TOTAL: 8 LN, Z1 BY, 650 CY

;3 3333333333333 2333333 3333333333323 33333%

LDX #TAEBLEA
LDY #TARLEE
Lou *#TABLEC

LDD P Xt

ADDD ST ++

STD s Uttt

CMFX #2%2@+TABLER
BNE AN

BRA ¥

FDB $00,8021,802,803,804
FDE $05,8%06,%07, $08, 09
FDB $10,%11,%12,%13,%14
FDB $15,%16,%17,%18,8%1D
FDB $959,%08,8$57,%2€, %95
FL'B $94,893,%02,8%01,8%90
FDB $89,.%88,%87,%86,%85
FDR $34,%$83,%82,8%31 %802

FDB Q'rrrrrrrrrrrrrrrlrfr@
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PAGE

20135
ee13s
82137
ee138
P2139
00140
o141
eol4z
20143
002144
0e145
00146

201438
02149
ee150

ge1s5z2
00153
00154
@155
9106
20157

22159

eeict
eeiez
eet1e3
eele4d
@165
ee166
ee1e7
ee168
eQ1ED

Qve

1106
1108
116D

1110
1112
1114
1116
1118
111E

114D

111F
1124
1129
112E
1133
1138
113D
1142
1147

MORBENCH
8E 111F
128E 1133
CE 1147
EC 81
AB AR
EB Ao
ED C1
8cC 1133
26 F3
ze FE

510/
25
1@
15
a3
94
ag
a4
ee

Wew

WHroMHMOCO

2.2

xxxxxxxxxkx VECTOR ADDITION / B8-BIT EEEEXEXKEXX

x

¥ PERFORM AN ELEMENT-BY-ELEMENT ADDDITION
* ON THWO VECTORS OF N 8-BIT ELEMENTS EACH.
* PLACE THE RESULT IN A DIFFERENT VECTOR.
¥ LET N BE Zzeo.

*

* SETUF: 3 LN, 12 EY, 10 CY

¥ OFERATION: € LN, 13 BY, 1@0%35=35@ CY
¥ TOTAL: 9 LN, 23 BY, 362 CY

¥

¥

t333333 333333333333 3333333333333 3333333323333

ABCNNN LDX *#TABLA
LDY #«TABLB
LDU #TABLC

ARC1 LDD P X++

ADDA  , T+

ADDB Y+

STD PRVE S

CHMFX #TABLA+ZO
ENE AEBC1

BRA 3

TABLA FCB 00,401,802 ,%03,8%04
FCE $25,4$06,%07,%08, %08
FCB $10,%11,%$12,%13,%14
FCB $15,816,%17,618,%19

TABLBE FCE $5995,%598,%97,$5E6,895
FCE $04,8035,%92,%591 ,8290
FCBE $80,%88,%87,4%836,%85
FCR $24,%83,%82,%81,%8¢

TQBLC FCB @!""""PI"”"”Q
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PAGE

eeli7z
Q0173
ee174
ea17s
20176
o177
gel17a
o179
oe1ge
o181
Q0182
pR183

2@185

ee187
0188
ee1as
ee19@
201951
pe182
00193
02194

22186

0o1i98

go7

115B

115D
115F
1162
1163
1164
1166
1168
11EB

116D

116F

34
FC
44
=1
6A
ze
FD
3z

2Q

es

o4
116F

£4
Fa
116F
E1

FE

F1CD

AN LOEMNMNO N

(]

z.2

EXKKEEXRXX 16-BIT SHIFTS EXKXEXEXEEX

3

¥ LOGICALLY SHIFT A 16-BIT QUANTITY FROM
¥* MEMORY RIGHT N PLACES. (ZERQ FILLS ON
* LEFT)Y. FLACE THE RESULT IN MEMORY.

¥ LET N BE 5.

*

¥ SETUF: 1 LN, 2 BY, z CY

* OFERATICN: 8 LN, 1€ BY, (13%5)+.=85 CY
¥ TOTAL: S5 LN, 18 BY, 90 CY

*

E 3

1333332333333 3333333333333333333 33

BEG LDB #5
PSHE B
LDD DWORD
BE1 LSRA
RORE
DEC 0,38
BNE BE1
STD DWORD
LEAS 1,8 CLEAN UP STACK
BRA %*

DWORD FDB S$F1CD
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FAGE ees MORBENCH

eeze1 exxkxuxxxx DOUBLE SHIFT RIGHT FIVE PLACES XXXXEXXX
eezez ¥

e0Zze3 * LOGICALLY SHIFT RIGHT A 16-BIT QUANTITY
eezo4 t 3 FROM MEMORY EXACTLY 5 PLACES.

eezes t REPLACE THE RESULT IN MEMORY.

poezes ¥

peze7 x SETUF: NONE

eezes x TOTAL: i2 LN, 16 BY, 3@ CY

pezeg ¥

oezie L2322 2333223332333 3323233323323 233323333323332323323323 38

geziz 1171 FC 1183 & LDD NORD GET DOUBLE BYTE
200213 1174 44 z LERA : 16-BIT SHIFT
eez214 1175 56 Z RORE :

e2z15 1176 44 4 LERA AGAIN

pez2ie 1177 56 z RORE

ee217 1178 44 2 LSRA AGAIN

ee218 1175 56 z RORB

o219 1174 44 z LSRA AGAIN

e0zz@ 117B 5€ z RORB

eezz21 117C 44 z LSRA AGAIN

eezzz 117D 56 p RORB

8@zz3 117E FD 1183 & STD WORD STORE DOUBLE EBYTE
eezzs 1181 2o FE 3 BRA E

@RZZ7 1183 F1iCD WORD FDR $F1CD
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eez3e
eez31
eez3z
Qez33
eez34
0ezZ35
20Z236
0ez37
pez3a
eez39
BRZ40
20241
Bez4z
eez43
eez44
ez4s5
eez4e
e0z47

@eZz48
eez5e
BeZ251

0ezs53
0ez54
R0zZ55
pezse
80257
eezse
00259
vezee
eezei
eezez
@0zZE3
vezE4
@0ZES
e0zZE6
eo2e7
00Z68
eezes
eez70
0ez71
eez7e
pez73
0eZz74
00z75S
2RZ76
eez77

eez79
eezai

vezaz
00z83

ees

1185
1188
118C

118F
1151
1193
1185
1187
1188
1194
118C
118E
11SF
11a1
11A3
11A5
11A7
1149
11AB
11AC
11AE
11Bo
11B2
11B4
11Be
11B8
11BS
11BE

11BD
11BF

11C1
11C3

MOREBENCH
8E 11BF
1@8E 11C1
CE 11C3
6F c4
EeF 41
AB el
E6 z1
3D
ED 42
RE 84
E& 21
3D
E3 41
ED 41
24 ez
6C c4
AB e1
E& A4
3D
E3 41
ED 41
z4 ez
&C c4
AG 84
Ee A4
3D
E3 c4
ED ca4
ze FE

e3E8
e1F4
eoeo

-~
[D R )]

oy
A=~ pouUNSNN_RIOLON—~AD~UNUTIND

-

-

w

2.2

EEXEEXKEEAEX 16 X 16 MULTIPLY EEEEXEEXEXE

*
¥
¥
*
*®
*
*
*
*
%
*
¥
*
X
x
*
x

ARBC

AB1

ABZ

AR
BR

MULTIPLY THWO 16-BIT POSITIVE VALUES
TO GENERATE A 32-BIT FRODUCT.

AT TERMINATION, BOTH INPUT VALUES
AND THE RESULT WILL EE IN MEMORY.

(AR X (C:D) = BDH: BDL
+ BCH:BCL
+ ADH: ADL
+ ACH:ACL
SETUF: 3 LN, 10 BY, 10 CY
CPERATION: 25 LN, 458 BY, 154 CY
TOTAL: zZ8& LN, 56 BRY, 164 CY

133333333333 3333333333333333333333333

LDX #AA
LDY $EBB
LDU *#C

POINTER TO A (MS BYTE)

CLR
CLR
LDA
LDE
MUL
STD
LDaA
LDEB
MUL
ADDD
STD
BCC
INC
LDA
LDE
MuL
ADDD
STD
BCC
INC
LDnA
LDB
MUL
ADDD
ETD

: %A LS BYTE
i #B LS BYTE

)

#A MS BYTE
i #B LS BYTE

Ll )
b I B )
- X C

#A LS BYTE
¥R ME BYTE

S QL —=
- wmow e s
~XCrm CC

! #A MS BYTE
#B MS BYTE

[ S~
~ 0w = v v W =
C <X CNCC

BRA

#*

FDB 1eeoe
FDR See
FDB e,0



ST

END ADDR 11BD

>1185;G

LDX #11BF P-1188 X-11BF Y-11Ci A-@0 B-@7 C-D® D-0Q U-11C3 S-Zz¢ee
LDY #11C1 P-118C X-11BF Y-11C1 A-00 B-067 C-D¢ D-0@ U-11C3 S-2000
LDV #11C3 P-118F X-11BF Y-11C1 A-0@ B-07 C-D@ D-09 U-11C3 S-Z00oo

CLR 11C3 P-1191 X-11BF Y-11C1 A-00 B-@¢7 C~-D4 D-020 U-11C3 5-2600
CLR 11C4 P-1183 X-11BF Y-11C1 A-0@0 B-@7 C-D¢4 D-20© U-11C3 S5-2000
LDA 11C® P-1195 X-11BF Y-11Ct1 A-E8 B-07 C-D& D-0@& U-11C3 S5-2000
LDB 11C2 P-1187 X-11BF Y-11C1 A-E& B-F4 C-DI8 D-0@ U-11C3 S-ZzZooe
MUL F-1198 X-11BF Y-11C1 A-DD E~-20 C-D8 D-02 U-11C3 S-zZoe0
STD 11C5 P-119A X-11BF ¥Y-11C1 A-DD E-Z@ C-D8 D-@@ U-11C3 S-zoee
LDA 1{1BF P-119C X-11BF Y-11C1 A-03 B-20@ C-D@ D-0@ U-11C3 S-zZeoe
LDB 11C2 P-119E X-11BF Y-11C1 A-@3 B-F4 C-D& D-00 U-11C3 5-2000
HMUL P-119F X-11BF Y-11Ci1 A-@2 B-DC C-D9 D-00 U-11C3 S-Z000
ADDD 11C4 P-11a1 X-11BF Y-11C1{ A-@3 B-BS C-D@ D-0@ U-11C3 S-zZeeo
STD 11C4 F-11A3 X-11BF Y-11C1 A-03 B-BY9 C-D©@ D-@0 U-11C3 S-Zzeee
BCC 11A7 P-114A7 X-11BF Y-11C1{ A-@3 B-BS C-D@ D-@& U-11C3 S-Z000
LDA 11Ceé P-1149 X-11BF Y-11C1 A-E8 B-BS C-D& D-@@ U-11C3 S-2ee0
LDE 11C1 P-11AB X-11BF Y-11C1 A-E3 B~-@1 C-D® D-ee@ U-11C3 S-Zoee
MUL F-11AC X-11BF Y-11C{ A-060 E-E8 C-D1 D-@8 U-11C3 S-Zo@e@
ADDD 11C4 P-11AE X-11BF Y-11C1 A-04 B-A1 C-D@ D-002 U-11C3 S-2ee0
STD 11C4 P-11E0® X-11BF Y-11C1 A~-04 E-Al C-De D-002 U-{1C3 S-2e0eQ
BCC 1{1B4 P-11B4 X-11BF Y-11C1 A-04 B-41 C-D& D-0@¢ U-11C3 S-20¢00
LDA 11BF P-11B6 X-11BF Y-11C1 A-03 B-A1 C-D@ D-0@Q U~11C3 S-2000
LDB 11Ct P-11BE38 X-11BF Y-11C1 A-23 B-01 C-D® D-00 U-11C3 S-Z20e0
MUL P-11E3 X-11BF Y-11C1 A-0@ E-0©3 C-D@ D-0© U-11C3 5-Z000

ADDD 11C3 P-11BB X-11BF Y-11C1 A-@0 B-@7 C-D@ D-20 U-11C3 S-ZzZeed
STD 11C3 P-11BD X-11BF Y-11Ct1 A-0@ B-@7 C-D@ D-020 U-{1C3 S-Zeoe
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PRZ&E
eeza’v
gezasd
eezae
QoZo0
e0Zo1
pezoz
@RZ93
oeza4
20285

ReZ37
20258
Rez99

ee3et
eoe3ez
ee3es
o304
ee30e5
ee306
pese?

ee3e9

20311

ee3ie
ee313

2ie

11C7
11CA
11CE

11D1
i11Da
11D4
11D6
11D7
11D8
11DA

11DC

MORBENCH
cc 2ezZ0e
108E el100
CE ezee
4C
AE Al
AF Ct
5a
ze F9
4R
ze F&
zo FE

o100
ezoe

2040

W e w

LM WMo ®IN

2.2

KEEKEKNEXXXXE MOVE BLOCK ¥EXEEXXEEX

COPY N BYTES TO ANOTHER LOCATION
LET N EBE 4.

3 LN

OFPERATION: 7LN,

¥

*

%

*

% SETUF:
3

* TOTAL:
*

*

ie LN

» 10 BY, 10 CY
i1 BY, Z+(21%32)+5=675 CY
» 21 BY, €E83Z CY

1333333333333 3333333332333333331

LoD
LDY
Lpu

INCA
Ei LDX
STX
DECBE
BHE
DECaA
BNE

BRA

FROM EQU
TO EQU
LENGTH EQU

#LENGTH/2
*#FROM
*#TO

P Y44+
s Ut++

B1

B1

$100
$z00
64

MS COUNT CORRECTION
GET TWO BYTES

FUT TWO BYTES

LS COUNT

MS COUNT



6.

2

PROGRAM SEGMENTS

These small segments of code are less well-suited
for benchmarks as they are more complex, harder

to fairly define, and perhaps more dependent on
the structure of an individual machine. They do
represent a demonstration of useful, powerful 6809
subroutine techniques.
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eeoos eeeD CR EQU $oD ASCII CR

eeelo0 ¥

poe1t ¥ COPYLN COPIES A TEXT LINE TO A NEW LOCATION
eee1z ¥

eeet13 * A TEXT LINE IS A SEQUENCE OF CHARS
eoe14 X ENDING HWITH A CARRIAGE-RETURN
eee1s

eeois 14e4 30 4D eei1 9 LEAX FROM,PCR

eee17 1408 31 ap eez2z 9 LEAY TO,PCR

oeeia 140C &D ez 7 BSR COPYLN

20219 140E 20 FE 3 BRA *

oezZe %

o0RZ1 x

PRRZZ 1410 A6 go € COPYLN LDA X+ GET & BYTE
eeRzZ3 1412 A7 ARG & STA » T4 STORE IT

eeBZ4 1414 21 @D z CHMFA #CR END OF LINE?
@RRZS 1416 Zz6 F8 3 BNE COFYLN NOFE, GO AGAIN
eee26 1418 39 5 RTS

eeez7 1419 54 FROM FCC /THIS IS A TEXT LINE./
eeezéd 142D oD FCR CR

eeRZzS 142E o0 T0 FCB Crrsrsrrrrrrrrsrrrrrrs 0
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PAGE

Beo3z
00033
@034
20035
poese
eee37
oee38
239
eee4de
00041
eee4z
00043

eee4s
20046
047
20048
0243
oposSe
02051
eeesz
pees3
00054
00255
eeess
eees?
oeess
20059
Pe0E0
0RoE1
eeees2
PORE3
oRecd
QOOES
eeeseE
QRes7
eeesa
2R0eE9
eee7e
00071
peerz
Reev3
opRe7T4
egevs
peeves

eee7s
82073
oeean
Peea1
eoegz

ee3

1443
1447
144B
144F
1451
1453

1455

1457
1459
145C

145E
1460
1462
1464
1466
1468
146A
146C
146D

14€F
1471
1473
1475
1477
1479
147A
147C
147E

147F
1485

14AD

BENCHIES
30 8D eo38
33 D eectl
31 8D ©0eSE
Ce 05
ap ez
2o FE
34 74
AE 61
16AE 63
Ee E4
AC €5
ZE 1A
AB 8o
AF 61
Al A4
ze Fd
31 21
5A
27 @D
AC €5
ZE es
AG ao
At A
ze DE
5A
26 F3
32 67
39
54
44
14aC
44
0005

W~NNOwDW

11

£~

MWD W

NawMmMWUnNnOWL-

2.2

DMK ¥ ¥E K B M

TART

SEARCH
¥
¥ (SP+
¥ (SP+
¥
¥ (SF+

.

¥ (SF+
%
AGAIN

* THIS
LOOP1

¥ THIS
LOOFZ

EXIT

BLOCK

END
STRING
LENGTH

IN A
RETUR
X FOI

LEAX
LEAU
LEAY
LDE
BSR
EBRA

FSHS

e)
1)

3)

Sy =

LDX
LDY
LDEB
LOOP
CHFX
BGT
LDA
STX
CMFA
ENE
LEAY
DECB
BEG
LOOF
CHFX
BGT
LDA
CHMFA
BNE
DECE
BNE
LEAS
RTS

FCC
FCC
EGU
FCcC
EQU

SEARCH LOCKS FOR A PARTICULAR TEXT STRING

BLOCK COF DATA.
NS 2Z=1 IFF FOUND.
NTS AT NEXT CHAR FAST STRING.

BLOCK,FCR DATA BLOCK STaRT aDDR
END,FCR DATA BLOCK END ADDR
STRING,FCR ADDR OF STRING TO BE FOUNI
#LENGTH

SEARCH

¥

U,Y,X,B

LENGTH

RESTART EBLOCK SEARCH (H)
RESTART BLOCK SEARCH (L)
STRING (H)

STRING (LD

END (H)
END (L3

1.8

3.8 RESET STRING PTR

e,s RESET STRING LENGTH
SEARCHES AFTER MISMATCH

5,8 END OF DATA?

EXIT IF YES, EXIT NOT FOUND
P Xt GET BYTE AND INC

1,5 STORE RESTART LOCATION
2,Y SAME AS STRING?

LOOP1 BERANCH IF NOT

1.,Y POINT TO Z2ND CHaR

EXIT FOR 1-BYTE SEARCH
SEARCHES AFTER MATCH

5,8 END OF DATAfT

EXIT [F YES, EXIT NOT FOUND
r K+ GET BYTE AND INC

£ Y+ SAME AS STRING?

AGAIN IF NO, START OVER

DONE?
LOOPZ IF NO, KEEP GOING
7.8 CLEAN UF STACK

/THIS IS A BLOCK OF DATIVE /
/DATA TO BRE SEARCHED./

x-1

/DATA /

¥-STRING
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PAGE

eoeeas
pooac
o111
goeas
eee8d
eeedd
20091
00032
ee023
200954
peeas
22096
8Qe37
228
00098
go1e0
o101
eelez
Q103
o104
00105
eelee6

ee108
eeies
ee11e
ee111
pet11z
02113

eod

14BZ
14B6
14BA
14BE
t14ce
14C2

14C4
14C8
14C8
14CA
14CB
14CD
14CE
14De

14D1
14DE
14DR
14EQ
14E5

3e
31
33
ce
&b
zZo

ic
AB
A9
18
A7
SA
ze

39

&D eezs
8D eezB
ap ees1
en
ez
FE

FE
az
AZ

cz

Fe

21
oo
83
e1
ee
oA

W~NM W

MLNDHOOHW

2.2

ALl

¥ MW N N X

¥

x
ADDSEQ
DoG

FIRSTG

SECSTG

THIRST
LEN

ADDSEQ ADDS A SEQUENCE OF DECIMAL DIGITS

(FIRSTG + SECSTG = THIRST?

FTRS

LEAX
LEAY
LEaU
LDE
BSE
BRA

CLC
LDA
ADCA
DAA
ST
DECE
BNE
RTS

FCE
FCE
FCE
FCB
FCEB
EQuU

ARE PAST LS BYTE OF STRING

FIRSTG+LEN,PCR
SECSTG+LEN,FCR
THIRST+LEN,FCR
#LEN BYTES
ADDSEQ

*

PTR TO 1ST STRING
PTR TO ZND STRING
FTR TO 3RD STRING
IN STRING

CLEAR CARRY

=X GET 2 DIGITS
=T ADD W/OTHERS
MAKE DECIMAL
U STORE 2 DIGITS
DONE? (CARRY UNAFFECTED)
DOG ERANCH IF NO

$01,823,8%45,899, %99
420,820 ,855,8$55,$39
$88,%76,854,%00,801
$21,$2353,%45,$67,%802

0"’!!""@

10 DECIMAL DIGITS = Zo
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00116 %

0117 ¥ SUBSEQ SUBTRACTS A SEQUENCE OF DECIMAL DIGITS (1I'
02118 : 3 FROM ANOTHER SEQUENCE OF DECIMAL DIGITS (IX)-
o119 t AND STORES THE RESULT (US>, aAaLL STRINGS
ee120 ¥ BEING COUNT EBYTES LONG.

ee121 *

@122 14EF 39 8D @Q2E 9 LEAX MINUEN+COUNT,PCR

o123 14F3 31 &D @34 B LEAY SUBTRA+COUNT,FCR

02124 14F7 33 aD ee3a O LERL RESULT+COUNT,FCR

2125 14FB C6& en 2 LDR #COUNT

00126 14FD &D @z 7 BSR SUBSEQ

PO1Z27 14FF 2@ FE 3 ERA *

ee128 E 3

Pe128 ¥

eeize 1501 1A 21 3 SUBSEG SEC SET CARRY

o131 153 34 @1 5 FEHS CC CaRRY TEMF

@132 1505 a6 99 2 LOOPS LDa *$20 THE TEN’S COMPLEMENT
2133 1507 AL (=¥ (24 SUEaA =Y NO CARRY POSSIEBLE
22134 1509 35 e1 S FULS CC THE SaVYED CARRY
@0135 150B A9 az e ADCA ,-X DC a RINARY AaDD
22136 {5@D 19 4 DanA BaCK TO ECD

20137 150E 34 e1 S FSHS CC SAVE THE CARRY!
ee138 1512 A7 cz E STA »=U STORE THE RESULT
0139 1512 5aA p DECB DONE®Y

e2140 1513 26 Fe 3 BNE LOOPS [F NOT, GO AGARIN
0141 1515 35 &1 7 FULS CC,FC CLEAN UP STACK, RTS
ee143 1517 25 MINUEN FCB £99, 899,893,495, %99

eeid44 151C S5 FCEB $99,809,800,%00,%00

20145 1521 @1 SURTRA FCE &21,8253,845, 867, %00

eeld4e 152¢€ a9 FCE $935,%500,%54,83Z2,811

00147 152R (415 RESULT FCB @rrrrersrs @

22148 oeeA COUNT EQU 10 DECIMAL DIGITS = Z@
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2151 1535 30 8D ee3B
90152 15395 31 8D o047
90153 153D CC eee4
ee154 154 &D 23
20155 1542 Ze¢ FE

W~NWwwowY

00157

00158

@e159

eo160

0161 1544 EC 81
00162 1546 58
00163 1547 58
00164 1548 58
PG1E65 1549 45
@166 154A 58
@e167 154B 49
00168

00169

0170 154C A7 A0
02171 1S4E A6 84
e2172 155 44
@173 1551 44
@e174 1552 84 ©F
20175

00176

ee177

2178 1554 34 04
@e179 1556 AA  EO
e2180 1558 A7  AQ
e2181 1554 EC 81
00182

00183

eei84 155C Sa
@0185 155D 5a
Q@186 1S5E 44
00187 155F &g
@e188 1560 44
82189 1S€1 5S¢
o®19¢ 1562 E7 AL
0191 1564 =9

oo nu NN &ED M PPN M™

OOMMNMNMNN

z.2

LEAX
LEAY
LDD
BSR
BRA

INPUT ,PCR
OUTFUT ,PCR
#CHARS4
PACKS

*

¥ PACK PUTS FOUR RIGHT-JUSTIFIED &-BIT CHARS (1IX?}
INTO THREE FACKED 8-RIT BYTES (1IY)?

%
#*
PACK

¥ HERE

¥ PICK

LDD

ASLB
ASLE
ASLE
ROLA
ASLE
ROLA
ACCA

STA
LDA

LSRA
LSRA
ANDA

P X++ GET FIRST TWO CHaRS

[S PACKED AND ACCB = XXXX0000

AL STORE FIRST PACKED BYTE
e,X GET THIRD CHaR
#$OF MAKE MS NYBBLE CLEAN

HERE ACCE HOLDS MS NYBELE

AND ACCaAa HOLDS LS NYBELE

FEHE
ORA
sSTA
LDD

UF Z2
ASLE
ASLE
LSRnA
RORR
LSRA
RORE
STE

RTS

E FUT B IN STACK TEMP

$3+ NOW TOGETHER, CLEAN STACK
PR STORE SECOND PACKED BYTE
s R++ GET LAST THO CHaARS

LSEE FROM ACCA AS Z MSE IN ACCE

£ Y+ STORE THIRD FACKED BYTE
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00154 t 3

20185 ¥ PACKS TAKES 4 ¥ ACCD E-BIT CHARS (IX) AND PACKS
ee196 ¥ THEM INTO 3 % ACCD &-BIT BYTES (IY)
2e197 ¥

ee198 1565 4C 2 PACKE INCA ADJUST COUNT MS BYTE
2198 1566 34 ec & PSHS D COUNT-ON THE STACK
pOzZRe 1568 &D DA 7 PAC1 BSR FACK FACK 4 INTO 3

@eZe1 156A BA 61 7 DEC 1,8 LS COUNT

eezez 156C Ze FA 3 ENE PACH

2223 156E €A E4 3} DEC @,S MS COUNT

ee2e4 1570 26 F& 3 BNE FAC1

eoz9S 1572 35 ae 8 FULS D.FC CLEAN UP STACK, RETURN
eRZe7 1574 se INPUT FCC /PACK THESE CHARS/

eozed 004 CHARS4 EQU ¥—-INPUT/4

o2zZRS 1584 ee OUTPUT FCE Qrrrrrrrsrs @



AUSTIN,TEXAS--MICROCOMFPUTER
Meaee-Me8@3 CROSS-ASSEMBLER

PAGE 008 BENCHIES
ee2i2 1580 3@ 8D FFFe 9
00213 1594 31 8D @045 9
0eZ14 1538 CC @04 3
@0215 155B 34 20 6
e0216 153D 8D  2F 7
00217 159F A6  AZ &
pez18 15a1 85 2@ 2
00Z19 1543 26 04 3
00220 15AS 8A 40 2
eez21 15A7 a7 A4 4
Q0222 15A9 10AC E4 7
ee223 1SAC 22  Fi 3
00zz4 15AE 32 B2 5
@0225 15B@ 20  FE 3
eez27

eezzs

eez2a

00230

00231 1SBZ 34 @6 6
00232 15B4 EC 80 7
@@233 15BE 44 2
00234 15B7 56 2
@0235 15B3 44 2
@0236 15E9 S6 2
@037

00238

@0Z239 1SEA 54 2
@024@ 15RB 54 2
ee241

eez4a2

@0z43 15BC ED A1 8
Q@244 15BE EC 8@ 7
20245 15Ce 58 2
Q0246 15C1 49 2
Q0247 15C2 5a 2
Q0248 15C3 49 2
Q0249 15C4 84  3F 2
00250

eo251

@0252 15C6 E6 80 6
@e253 15C8 C4  5F 2
eezs4

@255 15CA ED A1 8
@025€ 15CC 35 86 8

CaAPITAL OF THE WORLDI
2.2
LEAX IN,PCR
LEAY OUT,PCR
LDD $BYTES3
PEHE Y
ESR UNPAKS
TOASC LDA =Y GET A CHAR
BITa *%2¢ IF BS NOT...
BNE T01 ...THEN B6
OR& #%40 CINTO ASCII)
STa ' Y
TO1 cHPy S DONE GOING BACK?
BHI TOASC
LEaAs 2,5
BRA ¥
*
¥ UNPACK RETURNS THREE PACKED B-BIT BYTES (IX)
¥ INTO FOUR RIGHT-JUSTIFIED 6-BIT CHARS (1Y)
*
UNPACK FSHS D SAVE acCcD
LDD s X+ GET 1ST + ZND BYTES
LSRA :
RORR : 16—-BIT SHIFT, THO PLACES
L.SRA :
RORB :
¥ HERE ACCA IS AN UNPACKED BYTE
¥
LSRE
LSER
¥ NOW ACCE IS aALS0O UNPACKED
¥
STD P Y4+ STORE 18T + 2ND CHARS
LpD P X4 GET Z2ND + 3RD BYTES
ASLE :
ROLA ! ANOTHER SHIFT, THWO PLACES
ASLE :
ROLA :
ANDA #83F CLEAR TOP TWO RITS
¥ HERE ACCa IS UNPACKED
*
LDB P X+ GET 3RD BYTE AGAIN
ANDE ##%3F
¥ NOW BOTH ARE UNPACKED
STD PREX STORE 3RD 4+ 4TH CHARS
FULS D,FC RECOVER ACCD, RETURN



AUSTIN,TEXAS--MICROCOMPUTER CAPITAL OF THE WORLD!
MEcae®-ME808 CROSSE-ASSEMBLER 2.2

PAGE @9 BENCHIES

@0zS59 3

ORZE0 ¥ UNFAKSE TAKES 3 % ACCD B-EIT BYTES (IX) AND PUTS
oozet ¥ E-BIT CHARE INTO 4 ¥ ACCD BYTES

eRzZEe2 ¥

Pe2€3 15CE 4C 2 UNPAKS INCa ADJUST CTR MS BYTE
22264 15CF 34 ee & PSHS D COUNT ON THE STACK
@ee2e5 15SD1 &D DF 7 UNP1 BSR UNPACK UNFPACK 3 INTO 4

pe266 15D3 6A 61 7 DEC 1,5 LS COUNT

00267 15DS 26 Fa 3 BNE UNF1

oeze8 15D7 €A E4 & DEC e,s M3 COUNT

POZES 15DD z6 F& 3 ENE UNF1

eez7e 15DE 35 ae a FULS D,FC CLEAN UP STACK, RETURN
pez72 1584 IN EQU CUTPUT

0273 204 RYTES3 EQU CHaRS4

@ez74 15DD 1% ouT FCE Rr2:@s0rrr0rrrrrrrres®,0,0
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eezv7?

@0Z73
0eZzao
eezal
eezaz
BezZa83
o234
PRZAS
eezee
eezav
eezss
20z8as9
eezse
0ezo1
eozaz
eezo3
oezs4
Qezos
R0ZS9E
eez97
eozod
eez3s
e300
ee3e1
eo30e2
ee3e3
003504
ee3es
eo3ee
0307
eo3ed
eeses
eeste
ee311
ge31z
QR313
o314
2315
0316
ee317
ees1a
ee318
ee3ze
B3zt
ee3z2
00325
ee3z4
2325

e10

15F1
15F5
15F9
15FB
15FF
16ez
i604
iees
ige8
16QA

1eecC
1E0E
1610
ie12
1613

1615
1617
1619
161A
161C
161E
162@
1621

3e
31
24
31
CE
ae
34
&n
3z
ze

(2]
Ce
A7
5a
zE

Ee
EE
5A
AE
84
E7
sD
Ze

e4e0

ap eect
a0 008as
3e

8D oe4F
g400

08

&6z

@4

65

FE

ez
ge
ce

FE
gz
€5
AG
7F
CE

Fe

WU~NWNL W DLW

WMo NN

uMAMONGD O

2.2

DELTA@ EQU

x

¥ SUB-LINEA

¥

SETUFP LEAX
LEAY
PSHS
LEAY
LDU
LDA
FSHS
BSR
LEAS
BRA

BOYER +
ALGOR
oCT.

(SP+@)

(SF+2)
(SF+3)

(SF+5)

(SF+7) =

(8P+3) =

INITIALI
LSS LDA
LDE

SEt STh
DECE
ENE

*

¥ FINISH D
LDEBE
Lou

SEZ DECE
LDA
ANDA
STE
TSTE
BENE

€400 START OF DELTAQ@ TABLE

R STRING SEARCH

TEXT,.PCR START OF TEXT STRING
TEXTEN,FCRE END OF TEXT STRING

Y,X

FaT,.PCR START OF FATTERN

#DELTA® FOINT AT OFFSET TARLE

#FATLEN GET PATTERN LENGTH ( .LE. 2551)
U,v.,A

SLSS

9.8

*

MOORE, "A FAST STRING SEARCHING

ITHM" COMM. ACM VOL.Z0 NO.1@,
*77 PP.762-772.
RETURN (H?
RETURN (L2
PATLEN
FAT (H?>
FAT (L)
DELTA® (H>
DELTAQ (L
TEXT (H)
TEXT (L2
TEXTEN (H>
TEXTEN (LD
ZE DELTA® TARLE
2,8 GET PATTERN LENGTH
¥1 28 TABLE SIZE
U+ )
> FILL TABLE WITH
SE1 ) PATTERN LENGTH
ELTa2 OFFSET TAEBLE
Z,8 GET FATTERN LENGTH
5,8 FCINT AT DELTA® TABLE
P Y+ GET A CHaAR
*$7F MASK MSE
AU STORE COUNT AT DELTA@ (CHAR)
SEZ
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pe3z28 1623 31 3F S LEAY -1,Y WENT PAST!

PR3ZS 1625 10AF B3 7 STY 3,8 SAVE END-OF-PATTERN
20332 1628 AE E7 & LDX 7,8 START OF TEXT STRING
@331 16Z2A 4F z CLEA

00332 16ZB E€ ez 5 LDEB z,8 FATTERN LENGTH

@333 *

ee334 ¥ (IX) = START OF T'TEXT STRING’

20335 * AND WILL SEARCH *TEXT STRING'

ee336 ¥ (US> = THE DELTA®Q TABLE

2e337 ¥ (IY)> = LAST CHAR OF ’*PATTERN’

@338 % AND WILL DECR AS MATCH IS FOUND
PR339 *

20340 162D 5A z DECB

06341 162ZE 30 85 S FaAsST LEAX B.,X FOINT AT NEXT TRY IN TEXT
20342 1632 AC [23=) 7 CHFX 9,8 FAST THE END OF TEXT?
@343 1E3Z2 22 12 3 BHI NOTFND YES, NCOT FOUND (Z=0}
00344 1634 E6 84 4 LDE e,X GET CHaAR INTO B
@345 1636 EE& cS 5 LDE E.U GET DELTAQ QF CHAR
0e346 1638 26 F4 3 BNE FAST BRANCH IF NOT SAME
00347 *

pe348 ¥ DELTA1 (CHAR)Y = @8 IFF CHAR = PAT (PATLEN)
00349 * HERE B IS OBWYIOUSLY ZERO, SC. . .
20350 *

2e351 183A 5C Z SLOW INCEB ONE MATCH ALREADY
ee35z2 163E E1l ez S CMFE 2.5 GOT ENOUGH MATCHES?
@353 163D 24 ec 3 EHS FOUND YEE, RETURN FOUND
0354 1€3F AL az ) LDA r=X GET ANOTHER CHaR
90355 1641 Al AZ e CHMFA ,-Y IS IT MATCHED?

O35 1€43 Z27 F5 3 EBEQ SLOK IF YEE, GO SLOW
ee357 1645 HC a INCE FAST ORIGINAL MaATCH
@358 164 1@AE 63 7 LDY 3.8 i END-OF-FATTERN
@353 1648 Zo E3 3 BRA FAST + (REEBET IY)

oe3ce 3

oe361 *

@362 164B 1na e4 3 FOUND ORCC #%024 RETURN Z=1

0O3E3 164D 39 5 NOTFND RTS

BO3ES 164E 50 FAT FCC /PATTERN /

Q0366 eeea FPATLEN EQU ¥-PAT

@@3E7 1656 20 TEXT FCC / A STERN EXAMPLE OF & /
PO3ER 1es8C 50 FCC /PATTERM SEARCH IN TEXT./

0039 1€82 TEXTEN EQU *-1
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ee372
O373
ees74
2375
@376

ee378
00379
ee38a
ee3tl
ee38z
Q@383
o384
B335
oR386
0e347
pezasd
20389

02391
ees92
02393

o1z

1883
1688
i68aAa
16&E
1690

iedz
1683
1695
1387
1639
169E
168D
168F
1eai

16A3
16AD

cC
30
31
&b
ze

4C
34
EC
ED
BA
z6
EA
26
35

2513

ap ee15
D @e1F
ez

FE

Qe
81
At
61
Fa
E4
Fa
86

e1
2o
QoeRn

WNWPWww

CCW MW~ TN

zZ.2

¥ DCPY
DCFY

DC1H

ORIGIN
DEST
LONG

LDD
LEAX
LEAY
BSR
ERa

THE WORLD!

*#¥LONG/2

ORIGIN,PCR

DEST.PCR

DCPY
¥

COPIES 2¥%ACCD BYTES FROM (IX+) TO (IY+)

INCa
FSHS
LDD
STD
DEC
BNE
DEC
ENE
FULS

FCE
FCE
EQU

D
Rt
Y+
1,8
DCi
@,3
DC1
D,PC

ME COUNT CORRECTION
SAVE D

GET TWO BYTES

FUT TWCO BYTES

COUNT LS BYTE

COUNT MS RBYTE

CLEAN STACK, RETURN

1:1,2,3,4,5,6,7:8,9
9!?!'!!’7'@

10



6.

SYSTEM EXAMPLE -- MTEST

MTEST is a nice, fast (proportional to N rather than N2)
memory test system. The package has self-contained I/0
routines, is completely position-independent, and uses
no absolute RAM (all parameters and temporary variables
exist on the stack).

Note the use of LEA to point at text strings in a
position-independent manner. Note also the use of a
branch table near the start of the program which allows
external access to internal subroutines. This allows
MTEST to be updated without requiring changes in code
that may use MTEST subroutines. And note that the I/0
routines use absolute values on the stack to point at

I/0 devices. By using a PROM to set up these values (and
the stack pointer itself), the same code can beused in a
large number of diverse systems.

The User Stack Pointer is used to mark the original top
of the stack (the stack bottom for this system)so that
temporary locations may be accessed with similiar offsets
from different subroutine levels. The stack mark techni-
que also allows the unstructured system-abort technique
which requires no knowledge of present subroutine level

to completely clean up the stack.
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eoeel
o003
geee4d
0B0eR5
0eoE
eeeo7

eoges
gooioQ
eoe11
eeeliz
00013
eoetld
geet1s
eoe1le
" 1-1°0 g
poe1sd
eee19
eeezo
pooz1
peezz
eeez3
poez4
eeezs
220zt
eeecz7
eeeze
000Zz9
0030
ooer3t
00032
e0e33
00034
00035
eee3e
00037
eeess
eee3s
eeo4e
00041
eeedz
00043
00044
00045
e004c
00047
00048
0ee4s
eeose
00051
eoesz
oees3

HE X W K X

2.2

PSEUDO~RANDOM MEMORY TEST

NAM MTESTS

COPYRIGHT (C)» 1978 MOTOROLA INC, ARUSTIN, TX
MPU SYSTEMS DESIGN, T. F. RITTER
3.6/e1/27/78/TFR
3.1/e3/08/78/TFR+HMK

MTESTS IS A FAST MEMORY TEST SYSTEM. IT HAS
SELF-CONTAINED [/C, IS8 COMPLETELY POEITION-~
INDEFENDENT, AND USES NO ABSOLUTE RaM. IT MAY
BE PLACED IN UNDER 1K OF ROM.

MTESTS [S ENTERED AT ITS FIRST LOCATION,
AND ASKS FOR START/STOP ADDRESSES FOR THE
TEST. THE LAST FOUR HEX CHARS BEFORE ¢CR:>
ARE ACCUMULATED; A NULL ENTRY PRESERVES THE
ORIGINAL ADDRESSES. IF AN ‘M’ IS ENTERED,
MTESTS WILL COPY ITSELF INTC A NEHW LOCATION
BEGINNING AT THE CURRENT START ADDRESS, AND
RESTART AT THAT ADDRESS.

MTESTS STORES A SEQUENCE OF BYTES THROUGH-
OUT THE MEMORY TEST AREA, THEN COMPARES THE
RECOVERED SEQUENCE TO THE INTERNALLY-GENERATED
SEQUENCE. ANY ERRORS CAUSE DISPLAY OF THE
ERROR ADDRESS AND THE BITS IN ERROR; aLL STUCK
BITE AND IMFRCFER ADDRESS-DECODE ERRORS CaAN
BRE FOUND, AND SOME FATTERN-SENSITIVITIES ARE
ALSO EXERCISED. AN X’ IS FRINTED FOR EaACH
FASS THROUGH MEMCRY; EIGHT X’S IS A& FUNCTIONAL
TEST, AND “ALL DONE!* WILL PRINT AFTER THE
FULL SEQUENCE OF Zi11 PASSES; THEN MTESTS WILL
START OVER. AN <(ESC>» ALWAYS RESTARTS MTESTS;
¢CONTROL X> ALHWAYS RETURNS TO THE CALLING
SYSTEM (MAID, IN THE EXORCISOR .

A SHORT INITIALIZATION ROUTINE IS USED TO
CONFIGURE MTESTS FOR THE EXCRCISOR; CONTROL
THEN FALLS INTO M@, HWHHICH IS THE GENERaL TEST
SYSTEM. DIFFERENT HARDWARE CONFIGURATIONS
NEED ONLY SET UP THE STACK, PUSH & ZERO MODE
BYTE, FUSH THE ABSOLUTE ADDRESSES OF THE ACIA
CONTROL AND DATA PORTS, THEN CaLL TVYMO AT
MTEST+3. ALTERNATELY, FPUSHING A NON-ZERO
MODE BYTE AND ABSOLUTE ADDRESSES OF INFUT aND
OUTFUT ROUTINES WILL ALLOW aALL [/0 TO BE DONE
EXTERNALLY (NOTICE THE SPECIAL PARAMETER
REQUIREMENTSE OF INCH: ACCA IS SENT TO INCH AS
A PARAMETER. IFF E7 OF ACCaA IS @, INCH WILL
WAIT FOR A NEW CHAR. IFF aCCA=@, I[NCH MWILL
ECHO CHAR TO OUTCH. INCH RETURNS THE RECOVERED
CHAR IN ACCA.)
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PAGE @@e:Z

eeess
@0es7
egess
80055
poobe
eeecl
peerz

eegocd
000ES

QORET
00eE3
eeees
eeo70
e0e7v1
eoev72
Q073
0ee74
pee7s

e0e77
eeeva
oeers
eerse
eeest
BeRoaz
veoeas
eoedq
0RORS

F11E
eeeD
ebhen
2018
221B
eezo
eez4q

FCF4
FCFS

gego
oe4de
goze
ee10
epes
oeed
evez
eeel

BR7F
QORF
Q@DF
@REF
@OF7
@RFER
Q@FD
@e@FE

2

MAI
CR

CRL
CTL
ESC
SPA
STA

ACI
ACI

OCNZ—=T M

NE
NF
NH
NI
NN
NZ
N
NC

l2

D EQU

EQU
F- EGQU
X EQU

EQU
CE EQU
CKS EQU

AC EQU
AD EQU

CONDITION
EQU
EQU
EquU
EQU
EQU
EQU
EQU
EQU

CONDITION
EQU
EQU
EQU
EQU
EGU
EQU
EGQU
EQU

PSEUDO-RANDOM MEMORY TEST

$F11E REENTRY ADDRESS

$0D ASCII CR

$2DOA ASCII CRLF

$18 ASCII CANCEL (CONTROL X
$1B ASCII ESCAPE

sze ASCII SFACE

$24 STACK AREA (MAX SIZE)
$FCF4 ACIA CONTROL REGISTER
$FCFS ACIA DATA REGISTER
CODE BITS

$ae

$40

$20

$i0

$3

$04

22

%01

CODE BITS (NOT?}
$7F
$BF
$DF
$EF
&F7
$FR
SFD
$FE
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eooag
0083

ego1
00032
00033
eeoo4
200585
PBO9E
eees’
eeeos
eee3a3
peioe
o101

22103
22104
ee1e5
eeles
ee1e7
2103
eeles
ee11e
eo111
eet1z
00113

ee115
eeiis

go118
201183
ge1zeo
eeizi
eet1z2
0123
ee124
ee125
ee1zE
Q0127
ee1z2g
Pe1EZ9
22130
02131

Re3

2400
2400

@403
0406
24098
e4eC
e40F
@412
2415
@418

241iB
e41E
@421
2424
e4z7
e42a
@42D
430
2433
204368
@433

843C
@43F

0442
2445
0447
244n
044F
8451

MTESTS
ie @@3F
i1€E ee4pD
ie PZ8D
ie gza1
16 eseo
16 @ZF7
16 @310l
ie ezev
16 01 AR
16 2z41
1€ @Z83
1€ RZ29A
16 @ZoB
16 02A%5
16 22AQ
i6 ezaF
16 @ZAE
i6 Q2E3
16 @zC3d
16 ezC4
16 8125
16e e11ie
32 ac BB
6F EZ
CE FCF4
1@8E FCFS
8E Fi1E
34 T

[4)]

oot mea

oot ao

un

SN

2.2

MTEST

3

¥ TRA
*

TVMO
TVWINIA
TVGCH
TYINCH
TV INNF
TVINTH
TVINAD
TVBEGE

TVOUT

TYOUTC
TVYHEXL
TYHEXR
TYOUTZ
TVOUT4
TVYFDAT
TVPDA1
TVFCRL
TVREF

TVRER

TVFRIN
TVRAND

X M N M K K K O

ORG
LERA

NSFER

LBRA
LBRA
LERA
LERA
LBRA
LERA
LERA
LBRA

LERA
LERA
LERA
LERA
LERA
LEBRA
LERA
LEBRA
LBRA
LERA
LEBRA

LERA
LBRA

PSEUDO-RANDOM MEMORY TEST

$0400 POSITION INDEPENDENT

Mz
VECTORS

M@ GENERAL FURPOSE ENTRY

INITAC INIT. ACIA

GCH GET FPRESENT CHAR IN ACCh

INCH A=0 FOR ECHO, BIT7=0 FOR WAIT
INCHNF CHAR W/0 PARITY IN aCCa

INtH CHR IN A, HEX IN B, NEG IF RaD

INADDR GET CHARZ UNTIL HNON-HEX
BEGEND GET ADDRESSES IN ©,X - 3,X

ouT SEND CHAR FROM ACCA NOM

OUTCH SEND CHAR WHEN REaDY

CHEXL CONVERT ACCA MBN TO HEX (ASBCII)
CHEXR CONVERT RIGHT NYBEBLE

OUTZH SEND 2 HEX (IX)

OUT4H SEND 4 HEX (IX)

FDaTA SEND CRLF, DATA ...

PDATAL SEND DATA ...THRU MSB=1

FPCRLF SEND CRLF NULLS

REFEAT SEND ACCaA, B TIMES
RSFACE SEND SFACE, B TIMES

PRINEIL SEND ACCE AS BINARY
RAND PSEUDO-RANDOM ACCHA

MZ CONFIGURES FOR EXORCISOR

(ANOTHER SYSTEM MIGHT INITIALIZE
THE STACK, STACK I-/0 ADDRESSES,
THEN CALL TVMe@ IN A SMALL PROM).

LEAS
CLR
LDy
LDY
LDX
F&HS

MTEST.PCR STACK BELOW PROGRAM

»=S INTERNAL I/C MODE
#ACIAC

#ACIAD

*#MAID

U,Y,X ABSOLUTES ON STACK

¥ FaAaLL INTO THE GENERAL-FPURFOSE FACKAGE MO
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ee134
00135

20137
pe133
ee139
2140
oe141
P14z
eei43
o144
@145
evide
oet147
ee148
0145
oe1Se
eR151
@15z
ee153

Q@155
20156
ee1s?
22153
eeiss
peleo
el
eolEeZ2
Q0163
ee164
©e1es
o166
ee1e7
pR163
eR1E8
eei7e
o171
o172
Q173
2174
ee17s
0e176
ov177
00178
ee179
eeiae
eetsq
eel1az
ee1adnx
ge184
185

004

2453
455

245D
e4c61

2464
Q467
246/
R4€EC
R4EF
2473

0476

2473
©47E
e47D
@47F

0481
2483

1F
3z

17

17

30
17

30
17
86
17
3e
17

a€e
AT
A7
EF

=1
AE

z.2
MTESTS FPSEUDO-RANDOM MEMORY TEST
43 & Mo TFR s,U MARK STACK
77 5 LEAS -9,8 AREA FOR TEMP GLOBALS
x
¥ EQUATES ARE RELATIVE POSITION
* FROM USER STACK POINTER.
*
eeetE MODE EQU E [0 SELECT (@ MEANS ACIA AD
eeo4 CIaC EQU 4 ACIA CONTROL
eeod4 INSUB EQU 4 GET CHaAR IN A
eeoz CIAD EQU z ARCIA DATA
Gepz OUTSUE EGU z SEND CHAR FROM A
gaee MAl ECGU % MalID RETURN
FFFF SEED EQU -1 STARTING FPSEUDO-RANDOM VaLUI
FFFE FLAG EQU -2 ERRQR HEADING PRINTED?Y FLAG
FFFD XCOUNT EQU -3 NO. OF X'S ON LINE
FFFEB ENDAD EQU -5 END ADDRESES
FFF2 BEGAD EQU -7 BEGIN ADDRESS
FFF& NUCH EQU -8 NEW CHAR (ESCAFE TEST)
FFF7? OLCH EQU -9 OLD CHaR
*
¥ VERIFY PROGRAM CORRECTNESS
e300 2 M1 LESR VERFGHM
#*
¥ INITIALIZE ACIA
FFAS a LESR TVINIA
*
¥ PRINT PROGRAM ID
aD oes8 9 LEAX M3SG1,PCR FOINT AT MSG1
QZTE =) LBSR PDATA PRINT IT
x
¥ PRINT FPROGRAM LOCATION
ac 99 7 LEAX MTEST,PCR
ezEY 9 LESR PRNTIX
ZD 2 LDA #7 -
@z3%5 8 LESE OQUTCH
ap 8318 9 LEAX PGMEND,PCR
@zZDEB = LESR FRNTIX
x
¥ GET ADDRESESES
210F =) LBER GETAD
*
¥ INITIALIZE
21 2 T8TH LDa *1
5F 5 STA SEED,U SEED VALUE
5D 5 STA XCOUNT,U CRLF ON NEXT X
SE 7 CLE FLAG,U NO HEADING YET
¥
¥ STORE FSEUDO-RANDOM SEQUENCE
SF 5 TESTM LDA SEED,U GET SEED
59 & LDX BEGAD,U
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00186
oe1a7
00188
2189
ge19@
a1l
02182
20193
01954
08185
20156
26137
o198
ee199
00Z00
oezet
eezez
eRze3
°00Z204
Qez05
eezee
eeze7
oozZes
eozes
eozie
oeztt
epz12
eezt3
oezid
90215
0021k
Qo217
0RZ18
eezis
00z20
eezz21
00222
eezz3:
0vzz4
eez25
eezze
eezz7v

ves

2485
0487
2485
248C
048E
v45Q

2432
2494
24356
2438
249n
243D
249F
o4n1
@4A/3
24AS5
e4na
24an

24acC
@4nF
@483
P4ES
24E8
24EA
@4BC

@4BE
04C2Z
24C5
@4C7

@4CS
B4CR
24EC
@4ED
@4FE

MTESTS
30 iF
30 @1
17 eaCC
a7 aq
RC 5B
ZD FS
2153 SF
AE 58
30 1F
3¢ e1
17 GeBE
EE a4
34 e4
Al E@
z7 @3
17 2e5F
AcC 5B
gD EC
17 o048
127 FFA@
A6 5F
17 eGAR
=g SF
81 21
26 C3
30 a4D eezB
17 ezic
3e 59
ze E@
eDpoA
Se
a4
41
AR

LN L,DANOU W~Ne&QgUWO

WMHNWWDUmw

WUt w

2.2

TST1

LEAX
LEAX
LEBSR
STa
CMFX
BLT

~1,% DEX

1.,X NEXT LOCATION

RAND DO PSEUDQ-RANDOM IN A
e,x

ENDAD,U aALL DONE ENTRY SHWEEP?
TST1 NC, GO AGAIN

¥ CHECK RECOVERED SEQUENCE

TST3

LDA
LDX
LEAX
LEAX
LESR
LDB
FSHS
CMPA
BEQ
LBSR
CHFX
BLT

LESR
LBEQ
LDA
LEBSR
STa
CHPA

SEED.,V GET SEED AGAIN

BEGAD, U
-1,X
1,X
RAND
e,x SAVE CHAR FROM MEM
B : CEBEA
s S+ H
TST3
ERR
ENDAD,V ALL DONE CHECK SHEEP?
T8TZ NO, GO AGAIN
¥ DO PASSES UNTIL END OF SEGUENCE
FRNTX SINGLE PASS DONE
Me oUT IFF ESC
SEED,U :
RAaND : UFDATE SEED
SEED,V :
%1 END OF FEEUDO-RANDOM SEQUENCE
TESTHM DO ANOTHER FASS

*

MSG1

ENDM

ENE

LEAX
LEBSE
LEAX
BRA

FDB
FCC
FCB
FCC
FCE

PRINT DONE, THEN START OVER

ENDM,PCR FCINT AT END MESSAGE
FDATA1

BEGAD ,U

TSTS ANOTHER CCMPLETE TEST

CRLF

/FSEUDO-RANDOM MEMORY TEST 3.1 AT /
A4 $ HAMSB=1

/ALl DONE!L /
$A0
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MTESTS

PAGE

eez30
00231
@QZz32z
02233
oRzZ34
pez3s
BRZ36
QRZ37
eez3eg
o238
20z40
20241

eez43
poz44
eez4s
eQzde
vez47v
eez48
00z49
POZESO
eezsi
pezsz
00z53
00254
00Zz55
eezse
8257
eezsa
eezs59%
oezEd
00261
eezez
00ZE3
eoze4
eezes
00266
0BZE7
Qo268
eRz69
oez7e
ee271
eoz72
@ez73

206

@4F7
@4FS
04FB
@4FD
Q4FF
@50z
2504

e5e7
2509
250E
25eD
B50F
2511
8513
@517
@51A
es1D
@S1F
@522
es5z24
esz7
@528
@5S2ZR
@52D
@SZF

8531
@533
@54k
@557

6A
zE
86
a7
17
8e
16

34
&6
A7
eD
o
&C
30
17
17
e
17
CE
17
E6
an
E&
ap
35

sD
e7
4@
5D

@1EC

58

©19D

i6
21
5D
5E
eg
SE

aDp eetia

e1C5S
e1D1
ez
@1 AR
03
01D9
61
39
E4
35
9¢e

eDea
41
42z
A

FSEUDO-RANDOM

PRINT

umoaumw~
Ml o% K % K WK ¥

S~NPAENUIOMWMODUTOBWDSWIUITNE

-

BLOKWS A

DEC
ENE
LDa
STA
LESR
LDA
LERA

ERR PRINTS

IX (2,82
ACCB (1,8)
ACCA (8,5

FSHS
LDA
STa
TST
BNE
INC
LEAX
LESR
LESR
LEAX
LEBSR
LDB
LESR
LDE
BSE
EORB
BSR
FULS

FDB
FcCcC
FCC
FCE

OF THE WORLD!

MEMORY TEST

aN X FOR EACH PATTERN-TEST

XCOUNT,U LINE FULL®

FRE1 NO, NEED NG CRLF

*#E4 CRLF IMPLIES NEW CHAR CNT
XCOUNT ,V

FCRLF

*'X

OUTCH FRINT X

DATA FOUND IN ERROR
LOCATION OF ERROR
VALUE REaAD FROM MEMORY
FSEUDO-RANDOM VALUE

X,B.A

*1 i CRLF ON NEXT X
XCOUNT,U

FLAG,U ERROR HEADING FPRINTED?

Et YES, DON’T PRINT AGAIN!
FLAG,U REMEMEER, "IT’'S PRINTED!"
HDR,PCR FOINT AT HEADER MSG

FDATA

PCRLF

£,8 POINT AT SAVED X
oOUT4H PRINT ADDRESS

%3

REPACE

1.8 MEMORY VALUE
FRINBI PRINT MEMORY VALUE
e,s DESIRED VaLUE

FRINEI FRINT ERRORS a5 1’S
A.B,X,FPC GET SAVED REGS., RET

CRLF

/ADDRESE READS
/BIT-IN-ERROR/
$A0
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MEBaee-ME309 CROSS-ASSEMELER
MTESTS

PAGE

20276
eez77
pRZ78
eez78o
pezae
eezat
evzaz
00233
00Z84
@RZAS
pozae
eezavy
eezag

gezo0
eezs
gezsz
00293
eezs4
QRESS
P0ZSE
00z97
pezssa
0eZz99
ee300
2e301
00302
ee303
ee3e4
Pe3e5
ee3er
00307
Pe3ed
00309
o031@
00311
@ee31z
00313

ge7

essa
255A
©55E
©55C
255D
@55F
esee
256z
2563

@564
2566
25684
@5ean

956E
56D
RS6F
0571
0573
8576
578
@57R

@57D
@STF
o581
2583
@586

34
46
4E
46
Al
46
35
4E
39

-

34
8¢
34
58

25
a8
2e
&e
17
ae
17
6A

ze

-~
3&

CE
17
35

ez

E4

ez

151
o8
ez

24
30
ez
31
@12E
20
Q128
E4

ER
ez
ez
217A
as

MM UTN R MNP 3

DGOMOMNWMNDW MMM

fo oMWW

DO K O M

x
*
*
¥
*

2.2
FPSEUDO-RANDOM MEMORY TEST

RAND GENERATES A Z11 BYTE
SEQUENCE IN ACCa

AND PSHS

ROR®
RORA
RORA
EORA
RORA
FULS
RORA
RTS

A SAVE CURRENT =%
e,S
A GET SAVED %, CLEAN STACK

ROTATED, 1 BIT CHANGED

FRINRI QUTPUTS THE VALUE IN E
AS BINARY ASCII, MR FIRST,
THROUGH ACCA, TO SUBROUTINE OUTCH

FRINEI FSHE

T1
£ 3

T2
T3

¥*

LDA
FSHS
LELE

BRANCH IF

BCS
LDA
ERA
LDA
LESR
LDA
LESR
DEC
BRaANCH [F
BNE
FULS
LDE
LBSR
FULS

E.A SAYE STATE
s$o8
A SAVE BIT COUNTER

GET NEXT BIT
CARRY A ONE
TZ
*'0
T3
#1
CUTCH SEND [T
#SPACE
OUTCH
@,8 COUNT IT
NOT A WHOLE BYTE DONE
Tt
=} CLEAN UF COUNTER
*2 £ SFACES
RSPACE
~,B,PC RECOVER STATE, RET
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MEB8OO-MER@S CROSS-ASSEMBLER
MTESTS

PAGE

20316
22317
2318
8319
pa3ze
o3zt
ee3zz
Q0323
ee3z4
2e3zs

o327
o328
ee3Zz9
20330

0e33z
0B333
00334
20335
ees36

ee338

20340
20341

ee343
0344
200345
ee346
ee347
00343
20349
ee350
ee351
208352
@353
Bes354
Q2355
e356
@357
00358
@359

o8

2588
@58n
@58aD
2591
9593

@585
2588
e59C
055E

e5aQ
@5az2
esa4
25A8
@5SAR

@5AD

©5AE
@5C5

e5Ce
o5Ca
es5CA
25CccC
©5CE
25Do
esbz
es5D4

30
17
30
AcC
25

3e
3e
AC
23

Aac
2z
30
17
2e

39

34
8D
3e
&po
EC
A3
25
35

58

@39

8D ©1FB
59

18

aD FE&7
aa pc
58

24

SE

88

ah eeoe
2134

DB

44
AR

ee
iF
8z
3z
84
83
F2
&e

WO W W~wwwm

WWwww~

[4)}

CCWOUI~NUI~ND

2.2

FSEUDO-RANDOM MEMORY TEST

*

¥ GETAD GETS ADDRESSES INTO 0,X - 3,X.
GOES AGAIN IF TEST WOULD OVERWRITE
* MTESTDS.

x

GETAD LEAX BEGAD,U

LESR BEGEND

LEAX FGMEND,PCR END OF MTEST
CMFX EBEGAD,U

BLO OK TESTING AFTER MTEST

LEAX MTEST,FCR START OF MTEST
LEAX ~STACKS,.X ENCLOSE THE STACK
CHMFX BEGAD,U

BLS NOFE TESTING INSIDE MTEST!

CMPX ENDAD,U
EHI OK
NOPE LEAX DANMSG,PCR DANGER MESSAGE!
LEER FDATA
BRA GETAD

OK RTS

DANMSG FCC /DON’T OVERWRITE MTESTS!/
FCB $no

x
¥ BEGEND GETS BEGIN AND END
¥ ADDRESSES FROM KEYROARD
E 3 AND PUTS THEM IN RaM (IX).
x BEGIN .LE. END OR TRYS AGAIN.
*
¥ (X¥1(X+1)> = BEGIN
¥ (X+2):(X+3) = END
*
BEEGEND FSHS B.A SAVE STATE
ESR INST GET BEGIN ADDR
LEAX 2.,X
BSR INFIN GET END ADDR
LDD 0,
SUBD ,--X BEGIN .LE. END?

BLO BEGEND
PULS A,B.PC RECOVER STATE, RET
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ME8e0-Mc8e5 CROSSE-ASSEMBLER Z.2

PAGE @98 MTESTS PSEUDO-RANDOM MEMORY TEST

20361 ¥

20362 ¥ ASLM4 SHIFTS THO BYTES (X):(X+1)
P@363 * LEFT FOUR FLACES

00364 x

@365 O5he 34 ez 5 ASLM4 FPEHS A SAVE A

Q366 @5D3 86 24 z LDA #4 SHIFT COUNT

@367 @S5DA €8 @1 7 ASt LSL 1.,X% : 1e-BIT SHIFT
@e3e68 o5DC €9 84 =3 ROL @.,xX :

223693 OSDE 4A z DECA DONET

oe37@ OSDF z6& F9 3 ENE As1 AGAIN GO IF NO
ee371 e5E1 35 az 7 PULS a,PC RECOVER A, RETURN
00373 x

0374 ¥ INST PRINTS START MESSAGE AND COLLECTS
@375 ¥* A HEX ADDRESS (X):(X+1). ASCII
ees7e CR RETURNS, OTHER NON-HEX STARTS OVER.
@e377 ¥ M TRANSFERS CONTROL TO SUBROUTINE MOVE.
22378 ¥

223795 * BLOWS A,B

00380 ¥

@381 @5SE3 81 4D 2 INS1 CHMPA #'M

0382 @SES 1027 eesh € LEEC MOWE

02383 BSES 34 1@ 6 INST FSHS X

02384 OSEB 30 BD eez2z 9 LEAX STARTM,PCR ENTER HERE
@e385 @BEF 17 @eED =) LESR FDATA

@386 O@5Fz 35 10 e PULS X

ee387 ©@5F4 17 20oza o LBSR INADDR

@0388 @5F7 26 EA 3 BNE INS1 * AGAIN IFF BAD
V388 @SF8 3¢9 5 RTS : HEX .NE. CR
eo3se ¥

22391 ¥ INFIN PRINTS END MESSAGE aAND

ee3az ¥ COLLECTS A HEX ADDEESS (X):(X+1).
RR393 * ASCII CR RETURNS, OTHER NON-HEX STARTS OVER.
ee394 * M TRANSFERS CONTROL TO SR MOVE.
@e395 3

@386 * BLOHS A,B

82397 *

20398 @5SFa 81 4D Zz INF1 CMFA #%'M

@399 O5FC 1027 ewv4c 6 LEEQ HMOVE

or401 @EBE 34 1@ € INFIN F&8HS X

PR4ARZ @ERZ 30 8D @213 S LEAX FINM,.PCR ENTER HERE

Q403 oceE 17 @eeDe g LESR FDATA

02404 @£03 35 10 ) FULS X

22405 @ceB 17 ee1t = LESR INADDR i AGAIN IFF BaAD
2242E QERE 2€ EA 3 ENE INF1 : HEX .NE. CR
po4e7 ©E61@ 39 =4 RTS

02409 2c11 z0o STARTM FCC / BEGIN:/

o241Q 2€13 AR FCE $AQ

20411 @619 2o FINM FCC / END:/

02412 @61E AR FCB $AQ
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MESQO®-MEARD CROSS-ASSEMBLER
PSEUDO-RANDOM MEMCRY TEST

PAGE

@415
ee416
oR417
oe418
eR413
@420
ee42t
Q422
er423
ee4zd
ee4zs
ee4ze
eeaz7y
ee4czca
pe4zd
@430
o431
@432
00433
92434
02435
pa43e
@437
0e438
@438
02440
00441

evd43
Qeddd
00445
eesdc
00447
00443
00449
20450
00451
ee45z
20453
00454
00455

@457
0e4548
2459
oe4c0
eede1

210

@E1F
ecz1
vE24
eEZ6
vez8
@6ZB
@EZE
ecze
bE32
s34
R@B3E
QE3S
@ESE
@E3D
@e3F
@641
0E43
@645

2648
e’64A
@E4C
@e4E
0es2
@ES54
2656
ees8
265A
@gesc

@65F
ecez

MTESTS
34 ie
17 QeAD
Ce ez
17 eerv
35 10
17 @104
2B 13
6F &4
eF o1
zo e5
17 0OF2
ZR 72i)
ap 8s
EA @1
E7 21
ze F3
a1 ep
39
3e a0 FDBe
34 49
EE 59
108E @38D
AE 8o
AT Ce
31 3F
ze Fé&
38 4@
EE pa FD
a7 Dg o2
29

UMW UuNOOUOUWNHLODBNOD

N WLWUIDHD A NDD

2.2

*
% INADDR INFUTS HEX ADDRESS FROM KEYBOARD
* UNTIL NON-HEX. RETURNS NON-HEX IN
X ACCA AND ALSO Z=1 I[FF CR.
¥ LaAaST 4 CHARS ARE COLLECTED
x IN BINARY AT @,X AND 1.,X.
x
* BLOWS @A.B
*
INADDR PSHS X
LBSR OUT4H FRESENT ADDPRESS
LDE &2
LESR RSPACE
PULS X
LESR IN1H GET CHAR IN A, HEX IN B
BMI INAZ RETURN IFF NOT HEX
CLR e,x INITIALIZE ADDR=@
CLR 1.,X
BRA INA3 IS HEX, SO0 ACCUMULATE
INA1 LESR IN1H GET CHAR IN &, HEX IN E
BEMI INAZ RETURN IFF NOT HEX
INA3 BSR ASLM4 MAKE A PLACE
OREB 1.X% CATENATE HEX
STE 1.,%
ERA INA1
INAZ CMFA #CR RETURN Z=1 [FF CR
RTS
x
x MOVE RE-POSITIONS MTESTS TO BEGIN ADDRESS!
¥*
MOVE LEAX MTEST,PCR START OF MTEST
PSHS U
Lpu EEGAD,U HMCOVE-TO LOCATION
LDy #FGMEND+1-MTEST LENGTH OF MTEST
MO1 LDA PR GET A BYTE
STa LU+ MOVE IT
LEAY -1.,Y COUNT IT
ENE MO1 BERANCH IF NOT DONE
PULS U
JME [EEGAD,U] RE-INITIALIZE EVERYTHING
*
¥ OUT SENDS CHAR NOMW
¥
ouT STA [CIAD,U]
RTS
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ME80O-ME80S CROSS-ASSEMELER
MTESTS

FAGE

ee4gcd
20465
ee4c6
eodBe7
20468
20469
0e470
o471
pe47z
0e473
oe474
2475
20476
477
ee478
ee478
ep4ae
ee481

Q483
ov484
e@3q8as
v2486
ee487
ee488
20439

204951

@493
204384
02495
204386
20457
ee458
00485

eo5e1
pesez
@503
pesed
0es5es
eeses
eesS07
pesesa
2e5e9
easie
ees511
eesiz
20513
20514

211

@EE3
REES
2667
669
@EER
o6ED
2670
RE7Z
06T 4
@676
oe7a
@ETA
267C

267D
RETF

oea1
@ER3
e85
oB87

@EERB

e68D
69w
B33
BESS

@696
€98
ee9A

69D
@ESF
REAZ

34
EB
E7
1E
a6
17
1E
c4
EY7
c1
26
32
39

Ci
g =

E1
27
iF
6E

35

<]
Al
26
38

34
86
a7

86
a7
35

@4q
58
57
ag
ae

@R3F

as
7F
58
18
e3
c4

1B
@A

57
Qe
34
ao

&4

D&
D3
Fa

ez
536
D&

FDCa

22
ez

24

eI~ OMTOTN

Nnwoay ~I o M WU WM™

L4 Y I )]

~I B N

2.2
L3
¥ CKE
*
¥
E
c

KESC

CK1

¥ HER

Ckz

GCH

Gy W W

¥
¥ INI
¥
INITAC

PSEUDOC-RANDOM MEMORY TEST

S5C CHECKS FOR ESCAFE OR CONTROL X
ESC RETURNS Z=1 (RESTART MEMTEST)
CTLX = RETURN (JUMF TO MAID)

FEHE E
LDR NUCH ., U SET UP...
STB CLCH,U SOFTWARE EDGE-DETECTOR

EXG AB

LDA *¥$80Q GET CHAR NOW
LESR  INCH (NO ECHO)
EXG AB

ANDE  #87F

STER NUCH, U
CMPE #CTLKX

ENE CK1 ABORT MTESTD2 PACKAGE?
LEAS @,V FUNNY TFR U,8
RTS RETURN TO CALLING BYSTEM

CHFR #ESC
ENE CKZ
E ACCB = NUCH = ESC

CHMFE OQLCH,V THE OLD CHAR ALSO ESCT?

BEG CKz RESTART IFF FIRST ESC CHAR
TFR u,s ARESOLUTES REMAILIN

JHMP me,PCR FUNNY LRBRA M@

IS THE NEW CHAR ESCT

FULS BR.,FC RETURN MO ACTION

GETS PRESENT CHAR INTO ACCA

LDA [CIAD,U] GET THE CHAR NOW!
CMFAa [CIAD,U] STILL THE SAME?
ENE GCH IF NOT, GO AGAIN
RTS

TIALIZE ACIA
FEHS A
LDA #3 RESET ACIA

STA [CIAC,U]

X XX XXX @1 DIVIDE BY 186
XX 1 e1 XX 8 DATA + 1 STOFP
g e e X XX XX READER OFF, BOTH

INTERRUFTS DISABLED
LDA #400010101
STA [Ccrac,U3
FULS A,FC
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ME8GO-MEBRS CROSS-ASSEMBLER
MTESTS

FAGE

0517
ees18
@513
eesze
eesz1
ees5z2
00523
20524
RSZS
ees5ce
eeszv
@528
eesz9
o530
Q@531
ees32
@533

20535
eesS36
22537
Be538
es39
o540
22541
ees542
Q0543
ees44
2@545
eesS4e
00547
o548
oesS49
ges5s5e
PRES51
eessz

20554
005355
0556
@erss7
eass58
@559
eRsSEeR
ee5E1
@56z
Q@5E3
o564
0R565
o566
QR5E7
ees5e8

@12

@6hA4
BEAE
@EAR8
QEQA
eenD
@EAF
Q6R2Z2
@ER4
QeBE
@ER3
eeRC

@6EBE
RERF
QECe
eeCi
eescz
eeC4
@eCe
QeCa
@ECA
BecCC

@EeCD
@EeCF
@eD1
eeD3
PEDS
esDa
@EDA
@eDC

an
€D
27
EE
34
E&e
c4
27
AT
17
35

44
44
44
44
&4
8B
81
23
&B
39

ap
2]
34
ap
17
35
ap
16

ae

46

@3

pa ez
24

Da @4
ez

Fa

pe ez
FFA7

84

eF
3e
39
ez
@7

ee
ae
Bz
ES
FFCC
@z
EE
FFCS

~NODWMNODUNCoW N

giMNWwMmMNMNMNoNN

nm~Nmiwo~NNO -~

z.2

3
¥ OUTCH HAITS TILL ACIA IS READY
% THEN SENDS A TO aCIA
%
* CHANGES A
¥
OUTCH ORA #8380 DONT SEND MSB
TST  MODE,U
BEQ  OQUTC2
JMF  [OUTSUB,Ul ALTERNATE I/0
QUTC2 FSHS B SAVE B IN STACK -
OUTC1 LDB [CIAC,UJ ACIA CONTROL
ANDE  #2 CHECK XMIT STATUS
BEQ  OUTCH LOOFP IF XMIT NOT READY
STA [CIAD,U] ACIA DATA
LBSR CKESC
PULS B,PC RECOVER B, RETURN
*
¥ CHEXL MAKES LEFT NYBBLE ACCA
¥ ASCII HEX
% CHEXR MAKES RIGHT NYBRLE ACCH
* ASCII HEX
*
X BLOWS A
*
CHEXL LSRaA LEFT NYBBLE BECOMES RIGHT
LSRA
LSRA
LSRA ,
CHEXR ANDA #8F RIGHT NYBBRLE ONLY
ADDA  #$30 OFFSET TC ASCII @
CMFA  #'8 LARGER THAN ASCII 9%
BELS  CHEX1
ADDA %7 ADDITIONAL OFFSET TO ASCII A-
CHEX1 RTS z
*
¥ OUT4H DOES OUT2H TWICE
¥ OUTZ2H SENDS (IX) AS
¥ 2 ASCII HEX CHARS.
¥
X BLOWS A, MOVES X
¥
OUT4H BSR  OUTZH 2ZH X 2 = 4H
OUTZH LDA X+
FSHS A SAVE A
BSR  CHEXL GET MS BYTE
LESR OUTCH SEND IT
FULS A
BSR  CHEXR GET LS BYTE
LERA OUTCH SEND IT

PSEUDO-RANDOM MEMORY TEST
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ME802-ME809 CROSS-ASSEMBLER 2.2

PAGE 013 MTESTS PSEUDO~RANDOM MEMORY TEST

o571 X

ees7z ¥ PDATA PRINTS CRLF, TEXT STRING

@es73 ¥ (IX)> I8 START

eesS74 3 B7Y = 1 I8 LAST CHAR PRINTED

20575 ©6DF 8D eD 7 FDATA BSR FCRLF

pes7e ¥ FaAalLL INTO PDATA1

20578 *

Re573 ¥ PDATA1 PRINTS TEXT STRING

00580 ©Q6E1 34 12 7 FDATA1 PSHS A,X SAVE STATE

22581 REE3 A6 a4 4 FD1 LDA S GET A CHAR

@S82 OBES 17 FFBC - LBESR OUTCH SEND IT

ee5a3 @6E3 6D ae a TST P X4 TEST MSB

20584 QEEA ZA F7 3 BFL FD1 ANOTHER CHAR IF B7=0
20585 @BEC 35 Z 9 PULS A,X,PC RECOVER STATE,. RETURN
ees587 ¥

ees8e ¥ PRINT CRLF

Qo588 @EEE 34 16 € PCRLF PBHS X SaVE PRESENT X

pe59¢ ©cFe 3@ 8D @024 9 LEAX TCRLF.,PCR POINT AT CRLF TEXT
@591 QE&F4 8D EB 7 EER PDATA1 FRINT IT

@592 @eF68 35 =17 8 PULS X,FC RECOVER STATE, RETURN
@584 0OEFA8 epea TCRLF FDB CRLF

205385 @cFaA ee FCB @,,,%80

eessy x

ees98 ¥ PSPACE FPRINTS ONE SPACE

02558 ¥ RSPACE PRINTS B SPACES

eecRe ¥ REPEAT FRINTS ACCA, B TIMES

eecel 3

egeoez * THESE ALL BLOHW A,B

eeee3 *

PeE04 @BFE Ce o1 2 FSPACE LDB *1 SET COUNT TOC 1

PRER5 @7ee ae z2o Z RSPACE LDA #SPACE LOoAD A WITH ASCII SPACE
QBEGE @70z 17 FFSF 9 REFEAT LBSR CQUTCH FRINT ACCa

00EQ@7 @705 5A z DECE DONE?

00ERR 070eB 26 FA 3 BNE REPEAT LOOF TILL DONE

eecR9 e7ea 39 = RTS RETURN

ovE1@ *

eee11 ¥ INCHNF GETS A CHAR (NO PARITY)

eesiz *

@613 2709 4F 2 INCHNP CLRA SET UP ECHO, WAIT FOR CHAR
eeeid e7ea AD 23 7 BER INCH GET BYTE FROM ACla
eec1ls @7eC 34 7F Z ANDA #$7F CLEAR BIT7

QRE1E6 @7RE 38 =1 RTS
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PAGE

PoE19
QREZ0
eec21
geezz
00623
veez4
0eezs
eecze
RREZ7
0oEZH
oeezZ9
0eE30
ees3t
eee3z
QOB33
0e634
@eE3S
06356
ROB37
eeEe38

00640
o4l

20643
00E44
0645
00646
0ec47
oec48
eee49
eoss5e
eRES1
oRESsZ
RRES3
®BESY
@eEss
eeeSE
@ess7?
20E58
PRES9
oQccQ
eesE1
eege2
eeEel
20664
eeEss

214

e7oF
711
2713
e71e&
o717
2718
ev1c
@71E

Q721
erzz
o724
e72e
2728
B7ZE

@7ZE
@731

8732
o734
@736

@739
@738
e73D
O73F
0741
@743
@745
747
0743
274B
274D
@74E
75

eD
27
1213
4D
ZA
16
34
At

a4
24
A8
26
AB
1€

121
38

ap
iF
17

Cci
z5
Ci
23
Ct
28
C1
Z2
ce
c4
39

14
39

46
e3
D& @4

03
FF71
ez

D& o4

Fa
Ee
ee
DE 02
FF76

Da ez

D5
&g
FFza

L R ]
DYy~

DN WN WS

nownwn

DO~ Ut @

LANMNDOMNUINLLNWMN

2.z

— R M N N N

NCH TST
BEG
<MP

INCH3 TSTA

BFL
LEBRA

INCH4 PSHA

INCH1 LDaA

¥ IFF DaTa

LSRA

BCC

LDaA

ENE

LDA

LERA

INCHZ LDa
RTS

PSEUDO-RANDOM MEMORY TEST

INCH RETURNS CHAR IN ACCA.
ECHOS IFF OLD ACCA=D.
WAITS FOR CHAR IFF OLD ACCA R7=@

MODE ,U
INCH3
[ INSUB,U1

INCH4
GCH

[CIAC,UT ACIA STATUS

READY, Be=1

B® INTO CARRY

INCH1

£ 3+ SNEAKY FULL
INCHZ SHALL WE ECHO?
[CIAD,U]

QUTCH

{CIAD,U] DATA INTC ACCA

INTH WHAITSE FOR NEW CHAR FROM ACIaA IN ACCA,

IN1TH RETURNS NEG [FF NOT HEX.

*
x
¥ THEN TRANSLATES CHAR TO HEX [N ACCB.
*
*
[

N1H BSR
TFE
LESR

x

¥ CHECK aND

CMPINF CMFE
BLO
CHMFEB
ELE
CMFE
ELO
CHMPE
BHI
SURB

INGD ANDEB
RTS

INBAD ORCC
RTS

INCHNF HALT FOR CHAR AND ECHO
AB
CKESC

CONVERT FOR WALID HEX CHAR
#'0

INEAD BAD IF UNDER ASCII @
#'9

INGD GOOD IF e-9

#7Q

INEAD BEAD IF BETWEEN 9.4
#’'F

INBAD BAD IF OVER F

7 LETTERS TO BINARY
#&F RETURN POS IFF GOCOD
#N RETURN NEG IFF BAD



AUSTIN,TEXAS--MICROCOMPUTER CAPITAL OF THE WORLD!

MER200-ME80Q9 CROSS-ASSEMBLER
MTESTS

PAGE @15

006E8
eeeE9
QeEe7e
@oeET1
eoe72 @751
00673 @753
Q0674 @75S
Q8675 @758

e 0677

067
eee7¥
o0c80
11235
oRELZ O75A
eeeed ©7SE
eecdd4 @760
2885 @764
Q@886 0765
QQEs7? ©7e7
e0cad 0769
@RERY e7eB
00E9e @7&D
eeeS1 O76E
0632 0770
90693 0774
Q0E94 @777
90E€35 @779

90637 @774
@O0E0A @7AR

ee7eRd @7aC

34
iF
17
35

30
34
30
4F
A8
AC
23
32
4C
27
3
17
1F
39

ie
41
FF75
se

8D @ozE
1@
8D FCOC

ae
E4
FAa
ez

eg

aD eeec
FFEa

34

49
A

93

cc 0O m

NMoOoWBOUMRALODMNM OO D

2.2

PSEUDO~-RANDOM MEMORY TEST

x
¥ PRINTIX PRINTS THE VALUE IN X
% AS 4 HEX DIGITS
¥
FRNTIX PSHE X SAVE X
TFR sS,X FPOINT AT SAVED X
LESR OQUT4H FRINT IT
PULS X,FC RECOVER X, RETURN.
¥
¥ VERPGM VERIFYS PROGRAM CORRECTNESS BY
* COMPUTING FARITY OVER ENTIRE FGM
¥ (PGM HAS BEEN MADE ODD FARITY )
x
VERPGM LEAX PGMEND,FCR LAST ADDRESS
F8HS X (FARITY BYTE)
LEAX MTEST.FCR
CLRA
VER1 EORA X+
CHMFX @,58 DONET
BLS VER1
LEARE 2,85 CLEAN UP STACK
INCA oD FARITY NOW @'S
BEQ VERZ NORMAL RETURN
LEAX VERMEG,PCR
LBSR FDATA
TFR u,s RETURN TO MAIN SYSTEM
VEREZ RTS

VERMSG FCC
FCE

FGMEND FCB

ZINVALID PGM LOAD!/
$A0

$93 ODD PARITY BYTE
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porez eeoe END

TOTAL ERRORS veoR
TOTAL HARNINGS eoeoo



7.

0

PROGRAMMING TRICKS 'N TREATS

7.

1

INSTRUCTION EQUIVALENTS

JMP 0,X -

LBRA  CAT -

LBRA  *+5 =

LBSR  DOG -

LDX #P16 .
+

the loaded value will not
change when executed 1in
different locations

PSHS A
(shorter)
PULS A
(shorter)
RTI *

RAT

TFR

PSHS
PULS

PSHS
RTS

JMP

JMP

JSR

LEAX

X,PC

CAT,PCR

2,PC

DOG,PCR

PIG,PCR

the loaded value will
change when executed in
different locations

STA

s =9

(affects flags)

LDA

» S+

(affects flags)

PULS

TST
BMI
PULS
PULS

ALL

0,S
RAT
cC,pC
ALL



(Continued)

RTS = PULS PC
SEX = CLRA
TSTB
BPL COW
DECA
COW EQU *
= CLRA
TSTB
BPL BULL
COMA
BULL EQU *
= PSHS
LDX
LEAX B,X
TFR X,D
PULS
SWI = PSHS ALL
JMP [$FFF8]
= PSHS ALL
LDX POSUM,PCR
STX 10,9
JMP [$FFF8]
POSUM EQU *
TFR Y, X = LEAX 0,Y

(shorter, may affect flags)



7.2 COMPATIBLE MACROS

7.2.1 Monadic:

ASLD

TSTA

CLRD

CLRX

DBNE

DDBN

DECD

MOOSE

MOUSE

123

R

ROACH

DE1

DE2

ASLB
ROLA

CLC

LDD

LDX

DECB
BNE

DECB
BNE
DECA
BNE

TSTB
BNE

DECA
DECB

EXG
LEAX
EXG

TSTB
BNE
DECA
DECB
BNE
TSTA
EQU

#0

#0

MOOSE

MOUSE

MOUSE

ROACH

D,X
-1,X
D,X

DE1

DE2



7.2.1 (Continued)

INCD

JMP

LDDP

LDPC

LEAPC

LSRD

[[0,x]]

#VALU

CHICK

EEL

COON

DBLIND

INCB
BNE
INCA
EQU

EXG
LEAX
EXG

BRA

LDX
LDX
JMP

EXG
LDA
EXG
JMP

JMP

LSRA
RORB

COON

o = O
-
> > X

DBLIND

b

0,X
A,DP
#VALU
A,DP

[CHICK]

EEL



.2.

1

(Continued)

NEGD

NEGX

STDP DILLO

TGC (toggle carry)

BONNET

COMA
NEGB
ADCA

COMA
COMB
ADDD

STD
COM
COM
INC
BNE
INC
BVS
LDD

EXG
COMA
COMB
ADDD
EXG

EXG
STA
EXG

EQU
PSHS
TFR
EORA
TFR
PULS

#0

#1

BEE
BEE
BEE+1
BEE+1
BONNET
BEE
ERR
BEE

D,X

#1
D,X

A,DP
DILLO
A,DP

$01

CC,A
#C
A,CC
A



7.

7.

2.

2.

1

2

(Continued)

TGC

Dyadic:
ADDB A
(B<B+A)

ADDD X
(D«D+X)

ADDX D
(X<X+D)

ADDX Y
(X<X+Y)

ANDA B
(A<A A B)

ANDB A
(B«B A A)

NOTC

TOAD
FROG

EQU
EQU
BCC
ANDCC
BRA
ORCC
EQU

PSHS
ADDB

ADDD
ADDD

PSHS
ADDD

LEAX

ADDX

EXG
LEAX
EXG

PSHS
ANDA

PSHS
ANDB

$01
$FE
TOAD
#NOTC
FROG
#C

*

» S+

0,X

,S++

D,X



7.

2.

2

(Continued)

BITA B
(TEMP<A K B)

CMPA B
(TEMP<A-B)
CMPB A
(TEMP<B-A)
CMPX Y
(TEMP<X-Y)
EXG A,X
(A<XH )
(X<A:XL)

EXG B,X
(B«XL )
(X<«XH:B)

JMP X,PC
(PC«PC+X )

(destroys D,X)

PSHS
BITA

PSHS
CMPA

PSHS
CMPB

PSHS
CMPX

PSHS
TFR
PULS
TFR
PULS

PSHS
PSHS
TFR
PULS
TFR
PULS

TFR
LEAX
TFR

,S++

o O >» X I»

> O W X W >

PC,D
D,X
X,PC



7.

2

.2

(Continued)

LDDP #ADDR

LEAD SOW, X

(D<EA,EA=X+SOW)

LEAP GUPPY, X

(PC+~EA,EA=X+GUPPY)

SUBD X
(D«D-X)

SUBX D
(X<X-D)

EXG
LDA
EXG

EXG
LEAX
EXG

PSHS
LEAX
STX

PULS

SUBD

PSHS
SUBD

PSHS
COMA
COMB
ADDD
LEAX
PULS

A,DP
#ADDR
A,DP

X,D
SOW, X
X,D

X,PC
GUPPY,X
2,8
X,PC

#1
D,X



7.

2.

2

(Continued)

SUBX Y
(X<X-Y)

TFR A,X
(X<A:XL)
TFR B, X
(X<XH:B)

SUBX

PSHS
TFR

COMA
COMB
ADDD
LEAX
PULS

PSHS
STA
PULS

PSHS
STB
PULS



7.3 PROGRAM FLOW MANIPULATIONS

error return

(return to a different location if error--return
with offset)

RTO = PSHS D
LDD 2,S
ADDD #0FFSET
STD 2,8
PULS D,PC
= PSHS X
LDX 2,8
LEAX OFFSET,X
STX 2,S
PULS X,PC
= PULS X
JMP OFFSET,X
= INC 1,S
BNE ANT
(if offset = 2) INC 0,S
ANT INC 1,S
BNE EATER
INC 0,S

EATER RTS



(Continued)

- pass parameters in-line

(destroys X) LEAX RTN,PCR
PSHS X
LBRA SUB
FCB MOO
FCB MEOW
FCB CRUNCH
RTN EQU *

- alternately

LBSR SUB

BRA NXT

FCB 0INK

FCB WOOF

FCB SQUEEK
NXT EQU *

pass parameters on stack

(destroys X,A) LDX #CRT
LDA #TYPE
PSHS X,A
LBSR SUB?2

LEAS 3,S



7.

3

(Continued)

- subroutine skips past in-line arguments after

operating - system "interrupt"

WAY1

WAY?2

LDX
LEAX
STX
PULS

LDX
LEAX
STX
RTI

7,5
B,X
7,5
ALL

7,5
OFFSET,X
7,5

RETURN PC
COMPUTED OFFSET

RETURN PC
FIXED OFFSET

- alternate forms for loop construction

these are
deceptively
incorrect

this is an
in-1ine
subroutine

N

ESHS

{
PULS
PSHS

{

RTS

BSR

RTS

BSR
BRA

RTS

PC

PC

PC

*42

*+4
*-2



7.

3

(Continued)

- pass parameters in-

(destroys X) LEAX
PSHS
LBRA

FCB

FCB

FCB

RTN EQU

- alternately

LBSR
BRA
FCB
FCB
FCB
NXT EQU

- pass parameters on

(destroys X,A) LDX
LDA
PSHS
LBSR
LEAS

line

RTN,PCR
X

SuB

MOO
MEOW
CRUNCH

*

SuB
NXT
O0INK
WOOF
SQUEEK

*

stack

#CRT
#TYPE
X,A
SUB2
3,S



7

.4

PROGRAMMING HINTS: Wise And Other Whys

Go to co-routine

Call operating system

double exchange top-of-stack

ACCD exchange top-of-stack

point to PC-relative table

add top top bytes on stack and

push result

exchange PC with top-of-stack

EXG

SWI
FCB
FCB

FCB

LDD
LDX
STX
STD

LDX

STD

TFR

LEAX

LEAX

LDA

ADDA

STA

JSR

SQUID
WHALE

GNAT

21,PC
CAT,PCR
» S+

S

S

[,S++]



7.5 REFRESHMENTS

?tfu_ck Dj»\g»\t( /l/\ emony

PAGE EQV $ 10

PT™M FIRQ VECTOR
Triggens FRFG: <
FIRQ FEFT:! @}

YES _Represi INT 7

S

PAGE

Pﬁ"Q € Toe other I;\%M"*
. hendlerws

PAGE is Y- 4kk‘b\., naMmics

PP'G‘E 127 P- 16 K'y

RTI



7.6 SOFTWARE DOCUMENTATION STANDARDS FOR 6809

1. Each subroutine should have an associated header block
containing at least the following elements:

a) A full specification for this subroutine - including
associated data structures - such that from this des-
cription alone replacement code can be generated.

b) A1l usage of memory resources must be defined, including:

i) A11 RAM needed from Temporary (local) storage
used during execution of this subroutine or
called subroutines).

ii) A11 RAM needed for Permanent storage (used to
transfer values from one execution of the sub-
routine to future executions).

iii) A1l RAM accessed as Global Storage (used to trans-
fer values from or to higher-level subroutines).

iv) A11 possible exit-state conditions, if these are
to be used by calling routines to test occurrences
internal to the subroutine,

2. Code internal to each subroutine should have sufficient assoc-
iated Tine-comments to help in understanding the code.

3. A1l code must be non-self-modifying and position-independent.

4, Each subroutine which includes a loop must be separately
documented by flow-chart.

5. The main program should be executable starting at the first
location and should include an I/0 jump table immediately
thereafter.

6. When any single routine begins to approach the length of
one listing page, it becomes candidate for further subroutining.



7.7 ADDITIONAL TRICKS 'N TREATS

7.7.1 Instruction Equivalents

LEAX ,--X = LEAX -2,X
LEAX ,--Y = LEAY -2,Y
TFR Y, X

LEAX ,X++ = LEAX 2,X
LEAX ,Y++ = TFR Y,X
LEAX 2,X

NOP = TFR X, X
= LEAX 0,X

7.7.2 Monadic Compatible Macros

ABSA = TSTA
BPL AB1
NEGA
AB1 EQU *

AAX = EXG A,B
ABX
EXG A,B
NEGA
NEGB

SBCA #0
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